Коннектом. Как мозг делает нас тем, что мы есть

Автор: Себастьян Сеунг
                     

Серия книг: Universum

Жанр: научно-популярная литература,зарубежная образовательная литература,нейробиология

Издатель: Лаборатория знаний

Дата выхода: 2012

Возрастное ограничение: 16+

Тип: книга

ISBN: 978-5-00101-439-3

Цена: 660 Руб




Что такое человек?Какую роль в формировании личности играют гены,а какую – процессы,происходящие в нашем мозге?Сегодня ученые считают,что личность и интеллект определяются коннектомом,совокупностью связей между нейронами.Описание коннектома человека – невероятно сложная задача,ее решение станет не менее важным этапом в развитии науки,чем расшифровка генома,недаром в 2009 году Национальный институт здоровья США запустил специальный проект – «Коннектом человека»,в котором сегодня участвуют уже ученые многих стран. В своей книге Себастьян Сеунг,известный американский ученый,профессор компьютерной нейробиологии Массачусетского технологического института,рассказывает о самых последних результатах,полученных на пути изучения коннектома человека,и о том,зачем нам это все нужно.!



Коннектом. Как мозг делает нас тем, что мы есть
Себастьян Сеунг
Universum
Что такое человек? Какую роль в формировании личности играют гены, а какую – процессы, происходящие в нашем мозге? Сегодня ученые считают, что личность и интеллект определяются коннектомом, совокупностью связей между нейронами. Описание коннектома человека – невероятно сложная задача, ее решение станет не менее важным этапом в развитии науки, чем расшифровка генома, недаром в 2009 году Национальный институт здоровья США запустил специальный проект – «Коннектом человека», в котором сегодня участвуют уже ученые многих стран.
В своей книге Себастьян Сеунг, известный американский ученый, профессор компьютерной нейробиологии Массачусетского технологического института, рассказывает о самых последних результатах, полученных на пути изучения коннектома человека, и о том, зачем нам это все нужно.
Себастьян Сеунг
Коннектом. Как мозг делает нас тем, что мы есть
Sebastian Seung
Connectome
How the Brain’s Wiring Makes
Us Who We Are
Издание опубликовано по договоренности с Levine Greenberg Literary Agency, Inc. и литературным агентством «Синопсис».
В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации
Copyright © 2012 by Sebastian Seung
© Перевод на русский язык, оформление. Лаборатория знаний
* * *
UNIVERSUM
О науке, ее прошлом и настоящем, о великих открытиях, борьбе, идей и судьбах тех, кто, посвятил свою жизнь поиску научной Истины
Дорогой матери и дорогому отцу, которые создали мой геном и вылепили мой коннектом
Введение
Ни дороге, ни тропинке не пробраться сквозь этот лес. Длинные, тонкие, гибкие ветви деревьев распространились повсюду, заполоняя всё пространство благодаря своему безудержному росту. Даже солнечному лучу не под силу осветить узкие промежутки между переплетенными ветвями. Все деревья в этом темном лесу выросли из ста миллиардов семян, посеянных вместе. И каждое дерево обречено умереть в тот же день, что и его собратья.
Это волшебный лес. В нем есть всё. Более того, иногда мне кажется, что он – вообще всё на свете. Каждая книга и каждая симфония, каждое безжалостное убийство и каждый акт милосердия, любовные утехи и жаркие ссоры, шутки и горести, – всё берет начало именно в этом лесу.
Как ни удивительно, лес этот умещается в емкости диаметром меньше фута. И подобных лесов на Земле семь миллиардов. Случилось так, что и вам выпало присматривать за таким. Речь идет о лесе, который произрастает внутри вашего черепа. А деревья в лесу – особые клетки, именуемые нейронами. Задача нейробиологии[1 - В последние 5–6 лет в отечественной научно-популярной литературе всё чаще встречается термин «нейронаука», прямая калька с английского термина «neuroscience». Нейронаука не ограничивается собственно биологией и может включать в себя, например, нейропсихологию. В дальнейшем мы будем в зависимости от контекста использовать термины «нейробиология», «нейрофизиология» и лишь изредка – более обобщенный термин «нейронаука». (Здесь и далее – примечания переводчика.)] – исследовать эти загадочные ветви, приручить джунгли нашего сознания (см. рис. 1).
Нейробиологи уже начали подслушивать звуки этих джунглей – электрические сигналы в мозгу. Ученые сумели запечатлеть фантастические формы леса с помощью скрупулезных рисунков и точнейших фотографий нейронов. Но можно ли понять весь гигантский лес по нескольким разрозненным деревьям?
Рис. 1. Джунгли сознания: нейроны коры головного мозга, окрашенные по методу Камилло Гольджи (1843–1926) и зарисованные Сантьяго Рамоном-и-Кахалем (1852–1934)[2 - Подробнее о Гольджи и Кахале см. в главе 8.]
В XVII веке французский философ и математик Блез Паскаль писал о необъятности Вселенной:
Пусть человек созерцает Природу во всем ее обширном великолепии; пусть отстранит от своих глаз низменные предметы, что окружают его, и увидит ослепительный свет, озаряющий мир подобно вечному маяку; пусть Земля предстанет перед ним как малая точка, лежащая в границах огромного круга, описываемого этой звездой, и пусть он затрепещет при мысли, что эта бескрайняя окружность сама по себе кажется лишь малой песчинкой с точки зрения тех звезд, что движутся по небосводу.
Пораженный и смущенный этими раздумьями, Паскаль признавался, что его страшит «вечное безмолвие этих бесконечных пространств». Он размышлял о пространстве внешнем, о космосе, однако нам достаточно мысленно обратиться внутрь себя, чтобы разделить его страх. У каждого из нас внутри черепа располагается орган столь неизмеримо сложный, что его вполне можно назвать бесконечным.
Я сам нейробиолог и в свое время лично ощутил этот паскалевский ужас. Ощущал я и связанное с ним смущение. Иногда мне приходится публично выступать, рассказывая о положении дел в нашей сфере науки. После одного из таких выступлений меня буквально засыпали вопросами. Что вызывает депрессию и шизофрению? В чем необычность мозга Эйнштейна или Бетховена? Как научить моего ребенка лучше читать? Мои ответы не удовлетворили слушателей, и я увидел разочарование на их лицах. Наконец я со стыдом извинился перед аудиторией. «Простите, – сказал я. – Вы подумали, что я профессор, поскольку многое знаю. Но на самом деле я профессор, потому что знаю, как многого я не знаю».
Попытки изучить такой сложный объект, как мозг, могут показаться едва ли не тщетными. Миллиарды его нейронов напоминают деревья множества пород и имеют фантастические очертания. Лишь самые целеустремленные исследователи надеются хотя бы одним глазком заглянуть внутрь этого леса, но даже они видят очень мало и очень плохо. Неудивительно, что мозг остается загадкой. Моих слушателей интересовали дефектные или гениальные мозги, но даже обычная работа обычного мозга еще ждет своего исчерпывающего объяснения. Каждый день мы вспоминаем прошлое, воспринимаем настоящее, воображаем будущее. Каким образом наш мозг справляется со столь непростыми задачами? Пожалуй, тут есть пока лишь один уверенный ответ: никто этого по-настоящему не знает.
Устрашенные сложностью человеческого мозга, многие нейробиологи предпочли изучать животных, поскольку нейронов у них значительно меньше, чем у человека. Червь, изображенный на рис. 2, лишен того органа, который мы именуем мозгом. Нейроны у него рассеяны по всему телу, а не сосредоточены в отдельном органе. Вместе они образуют нервную систему, состоящую всего из трех сотен нейронов. Что ж, с этим еще можно попробовать справиться. Наверняка даже Паскаль, с его склонностью к депрессии при мысли о бесконечной сложности природы, не испугался бы нейронного леса червя Caenorhabditis elegans (С. еlegans) – так по-научному называется этот червячок длиной всего один миллиметр.
Рис. 2. Круглый червь С. elegans
Каждый нейрон этого червя имеет характерное местоположение, форму и даже имя, присвоенное специалистами. Черви в чем-то подобны станкам, массово изготавливаемым на конвейере. У любого имеется нервная система, состоящая из одного и того же набора деталей, и эти детали всегда расположены одинаково.
Более того, существует полная карта этой стандартизированной нервной системы. Результат (см. рис. 3) напоминает летную карту из тех, что встречаются на последних страницах журналов, выпускаемых авиакомпаниями. Четырехбуквенное имя каждого нейрона похоже на буквенный код, имеющийся у каждого аэропорта мира (правда, аэропортам присваивают трехбуквенные). Линии отражают связи между нейронами, подобно тому как линии на летной карте соответствуют маршрутам между городами. Мы называем два нейрона «связанными», если в точке, где они соприкасаются, есть небольшой стык, сочленение, именуемое синапсом. Через синапс один нейрон отправляет послания другому.
Инженеры знают: для того, чтобы сделать радиоприемник, нужно определенным образом соединить проводами различные детали – резисторы, конденсаторы, транзисторы. Нервная система представляет собой набор нейронов, связанных «проводами» – тонкими ветвями, о которых мы говорили выше. Вот почему карту, показанную на рис. 3, первоначально называли «монтажной схемой» или «схемой подключения». Недавно появился новый термин – коннектом. Это слово ассоциируется не с электротехникой, а с геномикой. Вероятно, вы слышали про ДНК – длинную молекулу, напоминающую цепь. Отдельные звенья этой цепи – нуклеотиды, небольшие молекулы четырех типов, обозначаемые буквами А, Г, Ц и Т[3 - Аденин, гуанин, цитозин и тимин.]. Ваш геном – последовательность нуклеотидов вашей ДНК, представляемая как длинный ряд букв четырехбуквенного алфавита. На рис. 4 показан фрагмент этой книги в три миллиарда знаков. Полный ее объем – миллион страниц.
Рис. 3. Карта нервной системы C. elegans – «коннектом»
А коннектом – вся совокупность связей между нейронами нервной системы. Сам термин (как и геном) предполагает полноту охвата. Коннектом – не одна связь и даже не множество. Это все связи. Ваш мозг в принципе можно исчерпывающе описать такой же диаграммой, как и для червя C. elegans, только эта диаграмма будет куда сложнее. Позволит ли ваш коннектом узнать о вас что-нибудь интересное?
Рис. 4. Небольшой фрагмент человеческого генома
Прежде всего, он сообщит вам, что вы уникальны. Конечно, вы и так это знаете, но раньше было на удивление непросто указать, в чем же конкретно заключается ваша уникальность. Ваш коннектом очень отличается от моего. Они не стандартны, как у червей. Это вполне согласуется с идеей, что каждый человек уникален. Такого рода уникальностью черви не обладают (попрошу червей не обижаться).
Различия зачаровывают. Когда мы задаемся вопросом, как функционирует мозг, больше всего нас обычно занимает, почему мозг разных людей работает столь по-разному. Почему я не могу быть общительнее, уподобившись моему другу-экстраверту? Почему моему сыну чтение дается труднее, чем его одноклассникам? Почему моя кузина-подросток вдруг начала слышать воображаемые голоса? Почему моя мать теряет память? Почему моя жена (муж) не может проявлять больше понимания и сострадания? Почему сам (сама) я этого не могу?
В этой книге предлагается очень простая теория: мы разные, потому что разные наши коннектомы. Эта теория сквозит в газетных заголовках типа «В мозгу аутиста иная схема связей». Черты характера, коэффициент интеллектуального развития (IQ) – всё это, возможно, тоже удастся объяснить посредством теории коннектомов. А может быть, в вашем коннектоме закодированы даже ваши воспоминания – наиболее уникальная часть вашей личности, присущая только вам и больше никому.
Теория эта циркулирует в научных кругах уже довольно давно, однако нейробиологи до сих пор не знают, верна ли она. Но область ее возможного применения, безусловно, колоссальна. Если теория окажется справедливой, лечение психических расстройств сведется к «ремонту» коннектомов. Собственно говоря, любые виды личностных изменений (когда вы учитесь чему-то новому, или начинаете меньше пить, или пытаетесь спасти рассыпающийся брак) напрямую связаны с изменением вашего коннектома.
Впрочем, давайте рассмотрим альтернативную теорию: мы разные, потому что у нас разные геномы. Иными словами, мы таковы, каковы мы есть, благодаря нашим генам. Уже наступает новая эпоха, когда становится доступной полная карта личного генома. Геномика достигла невероятных высот. Скоро мы сможем быстро и недорого узнавать полную последовательность букв собственной ДНК. Мы знаем, что гены играют свою роль в возникновении психических заболеваний и вносят свой вклад в обычные (не патологические) изменения личности и IQ. Но тогда зачем изучать коннектомы?
Ответ прост. Сами по себе гены не способны объяснить, почему ваш мозг стал именно таким. В материнской утробе вы уже обладали всем своим геномом, но тогда у вас еще не было, скажем, воспоминания о первом поцелуе. Воспоминания приобретаются в течение жизни, а не до ее начала. Кто-то из вас умеет играть на пианино или кататься на велосипеде. Это приобретенные способности, а не инстинкты, программируемые генами.
В отличие от генома, который «зафиксирован» начиная с момента зачатия, ваш коннектом меняется на протяжении всей жизни. Нейробиологи уже сумели установить основные типы таких изменений. Нейроны изменяют «удельный вес» связей между собой, усиливая или ослабляя их. Нейроны заново соединяются, создавая или уничтожая синапсы (это называется рекомбинацией связей), они «переподключаются», отращивая или отводя ветви. Наконец, путем регенерации возникают совершенно новые нейроны, а существующие могут отмирать.
Мы не знаем, как именно меняют ваш коннектом события вашей жизни – скажем, развод ваших родителей или тот чудесный год, который вы провели за границей. Но существуют веские доказательства, что четыре процесса коннектомных изменений – изменение удельного веса существующих связей, их рекомбинация, переподключение, регенерация, – находятся под влиянием того, что вы переживаете. Однако они, эти четыре процесса, управляются и генами. На сознание человека действительно влияют гены, особенно в младенческие и в детские годы, когда мозг еще только выстраивает свою «монтажную схему».
Ваш коннектом сформировали и гены, и жизненный опыт. И нам следует учитывать обе эти разновидности «исторического» воздействия, если мы хотим объяснить, каким образом ваш мозг стал таким, каким стал. Коннектомная теория различий сознания и мышления совместима с генетической теорией, однако она гораздо богаче и сложнее, поскольку отражает влияние нашего жизненного опыта. Кроме того, коннектомная теория менее детерминистична, то есть в ней делается меньший упор на предопределенность. Есть основания считать, что мы формируем собственный коннектом благодаря действиям, которые предпринимаем, даже благодаря тому, что мы думаем. Возможно, «монтажная схема» мозга действительно делает нас теми, кто мы есть, однако мы сами играем важную роль в налаживании связей, возникающих у нас в мозгу. Эту теорию можно выразить проще:
Вы – больше, чем ваши гены. Вы – это ваш коннектом.
Если теория верна, то важнейшая задача нейробиологии – научиться управлять четырьмя процессами. Мы должны понять, какие изменения требуется внести в коннектом, чтобы добиться поведенческих изменений, на которые мы рассчитываем. А затем мы должны разработать средства для того, чтобы вызывать эти изменения коннектома. Если нам это удастся, нейробиология станет играть неоценимую роль в попытках справляться с психическими расстройствами, исцелять мозговые травмы и самосовершенствоваться.
Однако с учетом сложности и запутанности мозговых связей эта задача оказывается невероятно трудной. Составление карты для нервной системы C. elegans заняло десяток лет, хотя эта нервная система содержит всего 7 тысяч связей. Ваш коннектом в 100 миллиардов раз больше, и там в миллион раз больше связей, чем букв в вашем геноме. Геномы – просто детская забава по сравнению с коннектомами.
Сегодня наши технологии наконец становятся достаточно мощными для того, чтобы мы могли попытаться принять этот вызов. Управляя изощренными микроскопами, современные компьютеры способны накапливать и хранить колоссальные базы данных изображений мозга. Кроме того, они помогают анализировать гигантские потоки информации, чтобы создавать карты связей между нейронами. С помощью искусственного интеллекта мы, вероятно, наконец-то увидим те связи, которые так долго ускользали от нашего взора.
Я убежден, что еще до конца XXI века окажется возможным находить человеческие коннектомы[4 - Говоря о коннектомах, автор неизменно пользуется глаголом «найти». Важно отметить, что в узком смысле коннектом – не реально существующий наблюдаемый объект вроде черепной коробки или нейрона, а умозрительная схема, которую вычисляют («находят») на основании изучения нейронов и межнейронных связей. Собственно, такому изучению и посвящена книга.]. Сначала мы двинемся от червей к мухам. Затем возьмемся за мышей, а потом уж за обезьян. И наконец примемся за самое сложное – человеческий мозг. Наши потомки будут с гордостью вспоминать эти достижения, считая их подлинной научной революцией.
Но действительно ли придется ждать многие десятилетия, прежде чем коннектомы поведают нам что-то о человеческом мозге? По счастью, нет. Наши технологии уже сейчас достаточно развиты, чтобы мы могли видеть связи в небольших фрагментах мозга, и даже это частичное знание полезно. Кроме того, мы многое можем выяснить, изучая мышей и крыс, наших близких родичей с точки зрения эволюции. Их мозг довольно похож на наш, а потому изучение связей в мышином и крысином мозгах прольет свет и на то, что происходит в нашем.
* * *
В 79 году мощное извержение Везувия погребло древнеримский город Помпеи под тоннами вулканического пепла и лавы. Застыв во времени, Помпеи ждали почти две тысячи лет, прежде чем строители нового времени случайно наткнулись на них. Когда в XVIII веке археологи начали там раскопки, они с изумлением обнаружили своего рода моментальный снимок жизни древнеримского города: роскошные увеселительные виллы богачей, уличные фонтаны и общественные бани, бары, бордели, пекарню и рынок, гимназию и театр, фрески, изображающие повседневную жизнь, и повсюду – фаллические граффити. Находка этого мертвого города стала откровением, позволившим заглянуть в мельчайшие подробности античной жизни.
Пока мы готовы отыскивать коннектомы, лишь анализируя изображения мертвого мозга. Это своего рода археология мозга, обычно ее называют нейроанатомией. Целые поколения нейроанатомов глядели в свои микроскопы на хладные трупы нейронов, пытаясь представить себе их прошлое. Мертвый мозг, с молекулами, закрепленными бальзамирующим раствором, являет собой памятник мыслям и чувствам, которые некогда жили внутри. До последнего времени нейроанатомия занималась, по сути, тем же, чем занимается археолог, воссоздавая быт древней цивилизации по фрагментарным находкам – монетам, гробницам, осколкам керамики. Но коннектомы станут подробными моментальными снимками мозга во всей его целостности: вспомним Помпеи, захваченные врасплох, остановленные на лету и погруженные в вечность. Такие снимки произведут настоящую революцию в том, что касается способности нейроанатомов воссоздавать картину функционирования живого мозга.
Вы можете спросить: зачем вообще изучать мертвый мозг, когда уже существуют всякие модные технологии для изучения мозга живого? Ведь мы узнаем больше, если отправимся в прошлое и станем изучать живые Помпеи! Нет, не обязательно. Скажем, при наблюдении за живым городом мы поневоле ограничены. К примеру, мы могли бы наблюдать за действиями одного жителя города, однако тогда нам пришлось бы закрыть глаза на действия всех остальных горожан. Еще пример: мы можем получить спутниковые изображения каждого городского района в инфракрасных лучах и узнать среднюю температуру, но подробностей мы не увидим. При таких ограничениях мы можем обнаружить, что исследование живого города, увы, дает меньше новой информации, чем мы надеялись.
Наши методы изучения живого мозга тоже имеют подобные ограничения. Вскрыв черепную коробку, мы увидим форму отдельных нейронов и сумеем измерить величину электрических сигналов, которые они передают, но это будет картинка лишь для крошечной доли нейронов мозга, а ведь их не один миллиард. Если же использовать неинвазивные (неразрушающие) методы проникновения в мозг для получения картины того, что находится внутри, мы не сможем увидеть отдельные нейроны, и нам придется удовлетвориться лишь приблизительной информацией о форме и активности различных зон мозга. Нельзя исключить вероятность, что какая-то высокоразвитая технология в будущем снимет эти ограничения, и мы научимся измерять характеристики каждого нейрона в живом мозге, но пока это лишь фантазии. Измерения в живом и мертвом мозге дополняют друг друга, и самый продуктивный подход, на мой взгляд, заключается в их продуманном сочетании.
Однако многие нейробиологи не согласны, что мертвый мозг вообще способен давать полезную информацию. Они утверждают, что единственно верный путь в нейронауке – это изучение живого мозга, ибо:
Вы – это деятельность ваших нейронов.
Под «деятельностью» здесь подразумевается передача нейронами электрических импульсов. Измерение этих сигналов предоставило массу свидетельств того, что нейронная активность в вашем мозгу кодирует ваши мысли, чувства и восприятие в данный момент времени.
Как идея о том, что вы – это деятельность ваших нейронов, согласуется с мыслью о том, что вы – это ваш коннектом? Возможно, две концепции кажутся противоречивыми, но в действительности они вполне совместимы друг с другом, поскольку имеют дело просто с двумя различными представлениями о человеческом Я. Одно Я стремительно меняется от мгновения к мгновению, то сердясь, то веселясь, думая о смысле жизни и тотчас же – о хозяйственных заботах, глядя, как за окном падают листья, а в следующую секунду переключаясь на футбол, который идет по телевизору. Это Я переплетено с сознанием. Его текучая, протеичная природа берет начало в быстро меняющемся рисунке нейронной активности мозга.
Другое Я куда стабильнее. Оно сохраняет детские воспоминания на всем протяжении жизни. Это Я – то, что мы называем человеческой личностью. Его природа, как правило, неизменна и постоянна. Этот факт очень утешает ваших родных и друзей. Свойства этого Я проявляются, когда вы находитесь в здравом уме и трезвой памяти, однако продолжают существовать и в бессознательных состояниях – например, во сне. Это Я, подобно коннектому, со временем меняется довольно медленно. Я, чье существование вполне согласуется с идеей, что вы – это ваш коннектом.
Исторически сложилось так, что основное внимание всегда привлекало к себе сознательное Я. В XIX веке американский психолог Уильям Джеймс красноречиво рассуждал о потоке сознания, о бесконечной струе мыслей, текущей сквозь наш ум. Но Джеймс предпочел не замечать, что у каждого потока имеется русло. Без этой борозды в земле вода не знала бы, куда ей течь. Коннектом как раз и определяет пути, по которым осуществляется нейронная активность, и мы можем считать его руслом сознания.
Это многозначительная метафора. На протяжении длительного периода времени, подобно тому как вода медленно формирует свое русло, деятельность нейронов способствует изменению коннектома. Таким образом, эти две идеи Я – как быстро движущегося, постоянно меняющегося потока и как более стабильного, но медленно трансформирующегося русла, – неизбежным образом связаны между собой. Эта книга – о Я как о русле реки, о Я в коннектоме – о том Я, которым слишком долго пренебрегали.
* * *
На последующих страницах я изложу свои представления о новой сфере науки – коннектомике. Моя основная цель состоит в том, чтобы вообразить нейронауку будущего и поделиться своим воодушевлением по поводу того, что мы наверняка откроем. Как нам отыскать коннектомы, понять, что они означают, и разработать новые методы для того, чтобы их изменять? Однако мы не можем вычертить оптимальный путь вперед, пока не поймем, откуда пришли, так что я начну с объяснения прошлого. Что мы уже знаем и в каком месте мы застряли?
В мозгу 100 миллиардов нейронов: этот факт ошеломляет даже самых бесстрашных исследователей. Одно из возможных решений здесь – это (как я объясню в первой части) вообще забыть о нейронах и разделить мозг на небольшое число зон. Нейробиологи многое узнали о функциях этих участков, интерпретируя симптомы различных повреждений мозга и его заболеваний. При развитии этого метода их вдохновляла появившаяся в XIX веке наука френология.
Френологи объясняли умственные и психические различия вариациями в размере мозга и его участков. Делая снимки мозга большого количества испытуемых, современные исследователи подтвердили эту концепцию. Ученые используют ее для объяснения различий в уровне интеллекта, а также при исследовании таких психических отклонений, как аутизм или шизофрения. Они нашли ряд убедительнейших доказательств того, что умы различны, поскольку мозг одного человека отличается от мозга другого. Однако это лишь статистические обоснования: средняя величина, вычисленная на основе изучения большого количества людей. Размеры мозга и его участков по-прежнему остаются практически бесполезными для предсказания умственных и психических особенностей отдельного индивидуума.
Это не просто формальное, техническое ограничение. Оно фундаментально. Хотя френология приписывает отдельным участкам мозга те или иные функции, она не пытается объяснить, каким образом каждый участок эту функцию выполняет. А без этого мы не сумеем по-настоящему понять, почему та или иная зона мозга у одних работает необычайно хорошо, а у других барахлит. Мы можем – и обязаны – найти более логичный ответ, чем просто «это происходит из-за разницы в размерах».
Во второй части я представлю альтернативу френологии – так называемый коннекционизм. Эта теория также берет начало в XIX веке. Подход этот в идейном смысле более амбициозен: в его рамках делается попытка объяснить, как же, собственно, работают участки мозга. Коннекционисты рассматривают зону мозга не как некую элементарную ячейку, а как сложную сеть, которая состоит из множества нейронов. Связи в этой сети организованы таким образом, чтобы нейроны могли предпринимать коллективные действия того или иного рода, которые и лежат в основе нашего восприятия и наших мыслей. Организацию этих связей можно изменять, приобретая новый опыт, что и позволяет нам учиться и запоминать новое. Организацию этих связей формируют и гены, как описано в третьей части, так что генетическое воздействие на ум и сознание также можно объяснить в рамках предлагаемой теории. Эти идеи могут показаться весьма многообещающими, но следует иметь в виду: их никогда не подвергали корректной экспериментальной проверке, которая давала бы убедительные результаты. Коннекционизм, несмотря на свою привлекательность с интеллектуальной точки зрения, так и не сумел стать настоящей наукой, поскольку нейробиологам всегда не хватало технологий, которые позволили бы должным образом картировать межнейронные связи.
Короче говоря, нейронауку обуздывает следующая дилемма. Идеи френологии можно проверить эмпирическим путем, однако они слишком упрощают картину. Коннекционизм – учение куда более изощренное, однако его идеи нельзя оценить экспериментально. Где выход из этого тупика? Мы должны искать коннектомы и учиться их использовать.
В четвертой части я делаю предположения, как этого можно достичь. Мы уже начали разрабатывать технологии для нахождения коннектомов, и я описываю современнейшие устройства, которые скоро будут вовсю трудиться в лабораториях по всему миру. Но что мы будем делать с коннектомами, когда их найдем? Первым делом мы воспользуемся ими для того, чтобы мысленно разбить мозг на участки, тем самым помогая неофренологам будущего. Мы разделим колоссальное множество нейронов мозга на типы, подобно тому как ботаники классифицируют деревья, разделяя их на виды. Это послужит удачным дополнением к геномному подходу в нейронауке, поскольку гены проявляют свое влияние на мозг во многом именно тем, что контролируют, как одни типы нейронов связываются с другими.
Коннектомы – как толстенные книги, буквы в которых мы с трудом можем разглядеть. Более того, эти книги написаны на языке, который мы пока не понимаем. Когда наши технологии сделают видимой эту мелкую печать, мы постараемся понять, что означают напечатанные строчки, что записано в коннектомах, какие воспоминания там хранятся. И таким путем, после долгих усилий, мы в конце концов сумеем найти способ корректной экспериментальной проверки коннекционистских теорий.
Однако найти один-единственный коннектом недостаточно. Нам захочется отыскать множество коннектомов и сравнить их между собой, чтобы узнать, почему один ум отличается от другого и почему ум отдельного человека меняется с течением времени. Мы станем охотиться на коннектопатии – ненормальные картины нейронных связей, которые могут служить причиной таких психических отклонений, как аутизм или шизофрения. Кроме того, мы выясним, как на коннектомы воздействует наше обучение.
Вооруженные этими знаниями, мы разработаем новые методы изменения коннектомов. В наши дни наиболее эффективный путь здесь – традиционный: упражняться, меняя свое поведение и мысли. Однако методики обучения станут куда действеннее, если их подкрепить вмешательством на молекулярном уровне, которое будет способствовать изменению коннектомов согласно четырем принципам, о которых мы упоминали выше.
Новая наука не возникает в одночасье. Так происходит и с коннектомикой. Сегодня мы видим лишь начало пути, и впереди множество преград. Тем не менее в ближайшие десятилетия неизбежен победный марш наших технологий и того понимания, которое они нам дадут.
Коннектомы станут определяющим фактором в наших размышлениях о том, что такое быть человеком. Поэтому пятая часть завершается доведением науки до ее логического предела. Движение, именуемое трансгуманизмом, разработало сложнейшие схемы для преодоления человеческого в человеке, но в нашу ли пользу расклад? Имеют ли шансы на успех амбициозные идеи крионики, связанные с заморозкой мертвых и их последующим воскрешением? А как насчет смелой киберфантазии об оцифровке тела или мозга, чтобы мы могли жить по-настоящему долго и счастливо? Я постараюсь извлечь конкретные научные идеи из этих надежд и предложить способы их эмпирической проверки с помощью коннектомики.
Впрочем, не будем торопиться. Ни к чему раньше времени задумываться о посмертном существовании и загробном мире. Давайте начнем с размышлений о земной жизни. В частности, с вопроса, о котором мы упоминали выше, с вопроса, которым рано или поздно задается каждый: почему люди отличаются друг от друга?
Часть первая
Имеет ли значение размер?
Глава 1 Гениальность и безумие
В 1924 году близ Тура, города на реке Луаре, умер Анатоль Франс. Пока французский народ скорбел о знаменитом писателе, анатомы из местного медицинского кол леджа исследовали его мозг и обнаружили, что весит он всего 1 килограмм – примерно на 25 % меньше средней для человека массы. Поклонников писателя огорчило это известие, однако не думаю, чтобы им следовало так уж удивляться. На фотографии (см. рис. 5) череп Анатоля Франса кажется совсем крошечным по сравнению с головой Тургенева.
Артур Кит, один из наиболее видных антропологов Англии, так выразил свое недоумение:
Хотя мы ничего не знаем о более тонкой структуре мозга Анатоля Франса, нам всё же известно, что с его помощью он совершал гениальные деяния, тогда как миллионы его соотечественников, с мозгом на 25 % или даже на 50 % крупнее, могли похвастаться лишь средними способностями обычного повседневного труженика.
Анатоль Франс, отмечает Кит, был «человеком средних габаритов», так что небольшие размеры его мозга нельзя списать на малые размеры всего тела. Далее Кит поясняет свое удивление:
Недостаточная связь между массой мозга и умственными способностями… всегда была для меня загадкой. Я знавал… людей с чрезвычайно массивной головой и с наружностью мудреца, которые оказывались неспособны справиться с любыми испытаниями, какие им посылал мир; и я знал людей с небольшой головой, которые, подобно Анатолю Франсу, добивались в жизни выдающихся успехов.
Это признание Кита в собственном невежестве поразило меня своей откровенностью. Мысль об Анатоле Франсе как о нейро-Давиде, торжествующем над миром большеголовых голиафов, заставила меня улыбнуться. Как-то раз, на одном из научных семинаров, я вслух зачитал эти слова Кита. Присутствовавший на семинаре французский физиктеоретик лукаво заметил: «В конце концов, Анатоль Франс не был таким уж великим писателем». Аудитория рассмеялась – и рассмеялась снова, когда я напомнил, что его «дилетантская писанина» принесла ему в 1921 году Нобелевскую премию по литературе.
Рис. 5. Два знаменитых писателя, чей мозг после их смерти взвесили и исследовали
* * *
Случай Анатоля Франса показывает, что для отдельного человека размер мозга и уровень интеллекта не связаны между собой. Иными словами, нельзя использовать первый параметр, чтобы с уверенностью предсказывать второй, если речь идет о каком бы то ни было человеке. Однако, как выясняется, эти две характеристики имеют статистическую связь: она проявляется при анализе средних величин для большого количества людей. В 1888 году английский ученый Фрэнсис Гальтон, человек многостороннего таланта, опубликовал статью «К вопросу о размерах головы у студентов Кембриджского университета». Он разделил студентов на три категории по тем оценкам, которые они получали, и продемонстрировал, что средний размер головы у лучших студентов чуть больше, нежели у худших.
Рис. 6. Поперечное сечение мозга, полученное с помощью МРТ
В последующие годы проводилось много аналогичных исследований, методы которых становились всё более изощренными. На смену анализу оценок за учебу пришли стандартные тесты на интеллектуальные способности – тесты на IQ, как их обычно называют. Гальтон оценивал величину головы, измеряя ее длину, ширину и высоту, а затем перемножая полученные числа. Другие исследователи измеряли окружность головы при помощи ленты-сантиметра. Самые отважные предпочитали извлекать мозг умерших и взвешивать его. Сейчас все эти методы кажутся примитивными, ведь в наше время ученые могут видеть живой мозг прямо сквозь череп, используя магнитно-резонансную томографию (МРТ). Эта потрясающая технология дает возможность получать изображения поперечных сечений мозга на заданной глубине (рис. 6).
В сущности, МРТ как бы виртуально рассекает голову на ломти и создает двухмерное (2D-) изображение каждого из них. Получается целый набор 2D-картинок, и по нему специалисты воссоздают форму всего мозга в трех измерениях, получая уже 3D-изображение. А затем можно весьма точно вычислить объем мозга. Благодаря МРТ стало гораздо легче проводить работы по сопоставлению IQ и объема мозга. За прошедшие два десятка лет осуществлено множество таких исследований. Ученые пришли к единому мнению: в среднем у людей с более крупным мозгом IQ выше.
Иными словами, современные исследования, сделанные с помощью усовершенствованных методов, подтвердили правоту Гальтона.
Однако это подтверждение не противоречит случаю Анатоля Франса. Размеры мозга все-таки почти бесполезны, когда речь идет об оценке IQ конкретного человека. Почему я говорю «почти»? Если две переменные связаны между собой статистически, о них говорят, что они коррелируют между собой. Статистики оценивают величину такой корреляции так называемым коэффициентом корреляции Пирсона. Этот коэффициент может принимать значения от ?1 до +1. Когда это число (обычно его обозначают буквой r) близко к упомянутым пределам, говорят, что корреляция сильная: если вы знаете одну переменную, то с высокой точностью можете предсказать значение другой. Если коэффициент r близок к нулю, то корреляция слабая, и при попытке вывести из одной переменной другую ваша оценка будет отличаться крайне низкой точностью. Так вот, для корреляции между IQ и объемом мозга коэффициент r = 0,33. Это довольно слабая корреляция.
Мораль сей басни такова: статистические утверждения касательно средних не следует безоглядно применять к отдельным индивидуумам. Неверную интерпретацию легко сделать и еще легче принять на веру. Вот откуда взялась знаменитая острота насчет того, что существуют три вида лжи: просто ложь, наглая ложь и статистика.
Научные статьи в этой сфере обычно пишутся сложным ученым языком, они пестрят цитатами и сносками, однако невозможно избавиться от ощущения, что все эти измерения голов – занятие немного смешное. Да и сам Гальтон был человеком, мягко говоря, чудаковатым. Его девиз – «Измерить и сосчитать всё, что можно» – выдает его неумеренное, почти абсурдное пристрастие к количественной оценке всего на свете. В своих воспоминаниях он пишет о том, как пытался создать «Британскую карту красоты». Прогуливаясь по улицам больших городов, он тайком проделывал дырки в листе бумаги, который прятал в кармане. Эти отверстия на свой лад отражали красоту проходящих женщин. Существовало три градации: «привлекательная», «невыразительная» и «отталкивающая». Каков же оказался результат исследования? «Я обнаружил, что на первом месте по женской красоте стоит Лондон, на последнем же – Абердин».
Помимо всего прочего, в таких исследованиях кроется нечто оскорбительное. Карл Пирсон, знаменитый ученый-статистик, протеже Гальтона, как раз и введший в статистику тот самый коэффициент Пирсона, расположил всех людей на линейной шкале, разбив их на девять категорий: гении, высокоодаренные, одаренные, умные, недостаточно умные, глупые, весьма глупые, чрезвычайно глупые, дебилы. Свести человека к одной-единственной цифре или категории по уму, красоте или какой-нибудь другой личной характеристике – это, воля ваша, отдает редукционизмом и дегуманизацией. Некоторые горе-ученые в свое время перешли грань между оскорбительным и безнравственным, пытаясь с помощью своих изысканий оправдать радикальную политику евгеники и расовой дискриминации.
Впрочем, ошибкой было бы с порога отвергать находку Гальтона лишь потому, что она кажется простодушной, или потому, что ее можно неправильно использовать, или потому, что корреляция между упомянутыми параметрами прослеживается слабо. У его наблюдения есть и положительная сторона. Гальтон заложил основу для вполне убедительной гипотезы: различия в мозгу – вот причина различия умственных способностей. Гальтон воспользовался наилучшим методом из всех, какие оказались ему доступны, и рассмотрел зависимость между успеваемостью и размерами головы. Современные исследователи обращаются к IQ и размерам мозга. Эти методы оценки уже лучше, но все равно они довольно грубы. Если продолжать усовершенствование методов, можно ли надеяться обнаружить еще более сильные корреляции?
* * *
Свести всю структуру мозга к одному-единственному показателю вроде общего объема или веса – какой-то слишком уж поверхностный подход, не так ли? Даже беглый осмотр мозга покажет, что в нем имеется множество зон и все они выглядят разными даже для невооруженного взгляда. Конечный мозг[5 - Конечный мозг – передний отдел головного мозга: полушария, покрытые корой, мозолистое тело, полосатое тело и обонятельный мозг.], мозжечок и ствол мозга (рис. 7) легко можно увидеть, если аккуратно извлечь мозг из черепной коробки, как проделывали при посмертном вскрытии тел Анатоля Франса и Тургенева.
Рис. 7. Три части мозга (конечный мозг, мозжечок, ствол мозга)
Ствол поддерживает конечный мозг, подобный плоду на стебле, а мозжечок украшает место их соединения, словно лист. Мозжечок отвечает за плавность и изящество наших движений, однако его удаление сказывается главным образом на умственных способностях. Повреждение ствола может убить, поскольку он управляет многими жизненно важными функциями, в том числе дыханием. Обширное поражение конечного мозга оставляет жертву живой, но в бессознательном состоянии. Конечный мозг обычно считают наиболее важной из этих трех частей, если речь идет об уровне человеческого интеллекта: она имеет важнейшее значение для всех типов наших умственных способностей. Кроме того, это самая крупная из трех частей мозга, она занимает около 85 % его общего объема.
Рис. 8. Конечный мозг делится на полушария (слева), а каждое полушарие делится на доли (справа)
Почти вся поверхность конечного мозга покрыта слоем особой ткани, имеющим толщину всего несколько миллиметров. Это кора головного мозга или просто кора. Занимая площадь не меньше полотенца для рук, кора помещается в черепную коробку лишь благодаря своей складчатости. Эти складки как раз и придают полушариям мозга сморщенный вид. Самая четкая граница, имеющаяся в коре, видна сверху: это большая борозда, идущая от передней части мозга к задней (рис. 8, слева). Эта борозда, именуемая продольной щелью, разделяет левое и правое полушария конечного мозга, «левый мозг» и «правый мозг», как их называют в поп-психологии.
Менее очевидно, как разделить каждое полушарие. Один из довольно убедительных вариантов такого разделения предлагает опять же ориентироваться на бороздки коры. После продольной щели наиболее заметная борозда – так называемая сильвиева щель (латеральная борозда) (рис. 8, справа). Затем – центральная борозда, идущая вертикально от сильвиевой щели к верхней части мозга. Эти две крупные борозды делят каждое полушарие на четыре доли: лобную, теменную, затылочную и височную. (Кстати, стоит получше запомнить названия и месторасположение этих долей: в дальнейшем я буду их часто упоминать.)
На поверхности мозга существует множество других бороздок, поменьше. Некоторые из них у всех людей расположены примерно одинаково. У них есть названия, и сегодня эти бороздки используются как своего рода ориентиры на местности. Но имеет ли смысл такое разделение коры по бороздкам? Они действительно представляют собой значимые границы – или же это просто какой-то незначительный побочный результат того, что коре пришлось смяться складками, чтобы поместиться внутрь черепа?
С проблемой разделения коры на участки впервые столкнулись в XIX веке. До этого считалось, что кора служит лишь для того, чтобы прикрывать остальной мозг. (Об этом говорит сам термин «кора»: в русском языке он близок по значению к ботаническому понятию «кора»; английское слово cortex происходит от латинского слова, означающего кору дерева.) В 1819 году австрийский врач Франц Йозеф Галль опубликовал работу, где изложил свою теорию «органологии». Он отмечал, что каждый орган тела выполняет определенную функцию: желудок служит для переваривания пищи, легкие – для дыхания и т. п. Галль заявлял: мозг слишком сложно устроен, чтобы являться единичным органом, а сознание – чересчур сложная вещь, чтобы являться единичной функцией. Он предложил разделить на части и мозг, и ум. В частности, он признал важную роль коры и разделил ее на ряд областей, которые и назвал «органами» сознания.
Иоганн Спурцхайм, ученик Галля, позже ввел термин френология, более знакомый нам, чем то название, которое дал этой теории Галль. Френологическая карта (см. рис. 9) показывает участки мозга, соответствующие функциям «восприимчивости», «твердости», «идеализма» и т. п. Конкретно эти соответствия ныне признаны пустыми фантазиями, основанными на шатких доказательствах, однако френологи в конечном счете все-таки оказались скорее правы, чем неправы. Их идея об особой роли коры сейчас признана повсеместно, а их подход, основанный на привязке умственных и психических функций к определенным областям коры, по-прежнему встречает серьезное и уважительное отношение ученых. Теперь он называется кортикальным или церебральным локализационизмом.
Рис. 9. Френологическая карта
Первое реальное доказательство такой локализации появилось позже, хотя и в том же XIX столетии. Это доказательство ученые получили, наблюдая больных с травмами мозга. В то время многие французские нейрофизиологи работали в двух парижских больницах – в Сальпетриере, на левом берегу Сены, обитали пациентки-женщины, а больные-мужчины размещались подальше от центра города, в больнице Бисетр. Оба заведения были основаны еще в XVII веке и сочетали в себе также функции тюрьмы и лечебницы для душевнобольных. (Различие между этими функциями невольно стер самый знаменитый постоялец Бисетра – маркиз де Сад.) В обеих больницах впервые начали применять гуманные методы лечения умалишенных – в частности, их перестали заковывать в цепи. Но мне почему-то кажется, что эти заведения все-таки оставались весьма мрачными и безрадостными.
В 1861 году французский врач Поль Брока был вызван в хирургическое отделение Бисетра на осмотр 51-летнего пациента, страдавшего от какой-то инфекции. Судя по истории болезни, этот человек находился в заключении с тридцатилетнего возраста. К моменту поступления в больницу он успел практически полностью утратить дар речи и способен был произносить лишь односложное «тан», которое и стало его кличкой. Поскольку Тан мог общаться с другими при помощи жестов, представлялось, что он понимает человеческий язык, хоть и не может говорить.
Рис. 10. Мозг Тана с поврежденным центром Брока
Через несколько дней после врачебного осмотра инфекция все-таки доконала Тана, он умер, и Брока произвел вскрытие трупа. Он распилил черепную коробку, извлек мозг и заспиртовал его для сохранности. Самым значительным повреждением мозга бедняги (рис. 10) оказалась обширная полость в левой лобной доле.
На другой же день Брока сообщил о своем открытии в Антропологическом обществе. Он заявил, что поврежденный участок мозга Тана отвечал за произнесение слов и что эту функцию следует отличать от функции понимания речи. Сегодня мы называем утрату речевых навыков афазией. Утрата собственно дара речи называется афазией Брока, а поврежденный участок коры головного мозга Тана – центром Брока. Эта находка позволила Брока разрешить спор, который длился десятилетиями. Френолог Галль еще в начале XIX века предполагал, что лингвистические функции сосредоточены в лобной доле мозга, но современники отнеслись к его идее скептически. Брока же наконецто сумел обеспечить для нее хоть какое-то убедительное доказательство и даже указал, где именно в лобной доле находится соответствующий участок.
В дальнейшем ученому встретились и другие случаи, аналогичные случаю Тана. Брока обнаружил, что все они связаны с повреждением левого полушария. Два полушария мозга выглядят очень похожими друг на друга, и современникам Брока трудно было поверить, что они могут так отличаться по своим функциям. Однако доказательства множились, и Брока, в своей статье 1865 года, заключил, что левое полушарие в значительной мере специализируется на речевых способностях и навыках. Последующие исследователи подтвердили, что этот вывод верен практически для всех людей. Таким образом, открытия Брока поддерживают теорию не только кортикальной, но и церебральной латерализации – идеи о том, что умственные и психические функции сосредоточены либо в левом, либо в правом полушарии.
В 1874 году немецкий нейрофизиолог и психоневропатолог Карл Вернике описал иной тип афазии. В отличие от Тана его пациент мог свободно говорить, однако фразы получались бессмысленные. Кроме того, больной не понимал тех вопросов, которые ему задавали. Посмертное вскрытие выявило повреждения части височной доли левого полушария. Вернике пришел к выводу, что эта утрата понимания – первичное следствие повреждений упомянутой зоны. Вторичное же следствие – бессмысленные речи: возможно, человеку необходимо самому понимать, что он говорит, дабы произносить нечто осмысленное. Совокупность симптомов, вызванных повреждением так называемого центра Вернике, сегодня называют афазией Вернике.
Брока и Вернике совместно заложили базу для концепции двойной диссоциации речи (произнесения слов) и понимания (восприятия обращенных к человеку слов). Повреждение центра Брока препятствует произнесению слов, однако понимание при этом сохраняется; повреждение центра Вернике уничтожает понимание, при этом щадя дар речи. Перед нами важное свидетельство того, что сознание человека имеет модульную структуру. Пожалуй, кажется вполне очевидным, что речевые способности отличаются от других умственных способностей, поскольку из всех животных речью владеют лишь люди; однако менее очевидно (или было менее очевидно до открытий Брока и Вернике), что эти способности можно подразделить на отдельные модули – производства речи и ее восприятия.
Брока и Вернике продемонстрировали, как картировать кору путем привязки симптомов заболеваний к конкретным поврежденным участкам мозга. Используя этот метод, их последователи сумели выявить функции многих других областей коры. Они построили карты, аналогичные тем, что вычерчивали френологи, но основанные на куда более надежных данных. Можно ли с помощью этих сведений о кортикальной локализации попытаться выяснить причины умственных и психических различий между людьми?
* * *
Когда в 1955 году Альберт Эйнштейн умер, его тело кремировали, а мозг – нет: в ходе вскрытия этот орган извлек патологоанатом Томас Харви. Спустя несколько месяцев патологоанатома уволили из Принстонской больницы, однако мозг Эйнштейна он оставил при себе. Несколько десятилетий, переезжая из города в город, он возил с собой 240 фрагментов этого мозга в особом сосуде. В 1980-х и 1990-х годах Харви рассылал образцы мозговой ткани Эйнштейна некоторым специалистам, одержимым, как и он, мыслью выяснить, чем мозг гения отличается от мозга обычного человека.
Харви сразу установил, что вес мозга Эйнштейна был средним или даже чуть меньше среднего. Таким образом, сам по себе размер мозга не мог объяснить, почему Эйнштейн обладал такими необычайными способностями. Сандра Вителсон и ее коллеги в 1999 году предложили другое объяснение. На основании фотографий, которые Харви делал при вскрытии, они предположили, что у Эйнштейна был увеличен участок коры, именуемый нижней теменной долькой (это часть теменной доли мозга). Возможно, Эйнштейн был гением, потому что имел необычно большую часть мозга. Сам Эйнштейн рассказывал, что зачастую мыслит скорее образами, чем словами, а специалистам известно, что теменная доля мозга как раз и отвечает за визуальное и пространственное мышление.
Анатоль Франс и Альберт Эйнштейн принадлежат к тем гениям, чьим мозгом общество зачаровано с давних пор. Интерес к мозгу гениев возник не вчера. Энтузиасты XIX века сохранили для вечности мозг таких знаменитостей, как Байрон и Уитмен. Их мозг и по сей день покоится в пыльных склянках, задвинутых в музейные запасники. Мне кажется странно воодушевляющим тот факт, что Тан и Поль Брока, бессловесный пациент и наблюдавший его нейрофизиолог, теперь являются компаньонами в вечности: мозг того и другого хранится в одном и том же парижском музее. Нейроанатомы сберегли и содержимое черепной коробки Карла Гаусса, одного из величайших математиков всех времен и народов. Они обратили внимание на необычно крупную теменную долю, объясняющую, по их мнению, гениальность покойного. Тем самым они предвосхитили объяснение талантов Эйнштейна, которое дала Вителсон.
Стратегия изучения размеров определенных участков мозга, а не размеров всего мозга, отнюдь не нова. Вообще-то ее придумали еще френологи. Франц Йозеф Галль, отец-основатель френологии, так озаглавил свой трактат 1819 года: «Анатомия и физиология нервной системы в целом, а также мозга в частности, с присовокуплением наблюдений касательно возможности оценивания некоторых умственных и нравственных качеств человека и животного по конфигурации головы». Галль утверждал, что каждое умственное или психическое «качество» связано с размерами соответствующего участка коры. Менее уверенно он предполагал, что форма черепа отражает очертания коры и по форме черепа можно судить о качествах натуры его носителя. Френологи колесили по миру, предлагая родителям предсказать судьбу их чад, подбирая женихов и невест, отсеивая кандидатов, пришедших наниматься на работу, и всё это – ощупывая шишки и выступы на голове.
Галль и его ученик Спурцхайм делали предположения о функциях тех или иных участков коры на основании распространенных мнений о «крайних» проявлениях того или иного качества. К примеру, если у гения большой лоб, то ум, по-видимому, содержится в передней части мозга. Если у мошенника голова раздута по бокам, это означает, что за склонность к обману отвечает височная доля мозга. Эти забавные методы привели к выстраиванию локализаций, которые в большинстве своем оказались абсурдными и противоречащими здравому смыслу. Ко второй половине XIX века френология повсеместно превратилась в объект насмешек.
Сегодня мы обладаем технологиями, о которых френологи могли только мечтать. МРТ позволяет нам с высокой точностью измерять размеры участков коры, и при этом нет нужды обращаться к глупому методу ощупывания шишек на черепе. Сканируя мозг множества людей, ученые могут получить куда больше информации, чем Вителсон в ходе своего простодушного изучения мозга Эйнштейна. Что же обнаружили неофренологи?
Они продемонстрировали, что IQ действительно связан с размерами лобной и теменной долей мозга. Как выяснилось, эта корреляция несколько сильнее, чем корреляция между IQ и общим размером мозга, что вполне согласуется с идеей, согласно которой эти доли имеют большее значение для оценки степени интеллектуальности. (Затылочная и височная доли отвечают главным образом за наше восприятие – зрение, слух и другие чувства.) Но, увы, эта корреляция все-таки слаба.
Впрочем, такие работы не во всем следуют духу френологии, которая делила не только мозг на области, но и ум человека на отдельные способности. Все мы знаем, что математически одаренные люди меньше преуспевают в словесных искусствах – и наоборот. Сегодня многие ученые отвергают идею об IQ и интеллекте «в целом», считая ее упрощенной. Они предпочитают говорить о «множественных интеллектах», и эти интеллекты, как выясняется, действительно коррелируют с размерами определенных областей мозга. Так, у лондонских таксистов увеличен правый задний отдел гиппокампа – участок коры, отвечающий, как полагают, за ориентацию на местности. У музыкантов больше мозжечок и толще некоторые участки коры. (Увеличенные размеры мозжечка понятны: считается, что этот орган важен для тонкой моторики.) У двуязычных людей утолщена кора нижней части левой теменной доли.
Да, это удивительные открытия, но они имеют лишь статистический характер. Если начать внимательно разбираться в результатах этих исследований, вы увидите, что упомянутые области мозга крупнее лишь в среднем. Изучение размера отдельных участков мозга по-прежнему бесполезно, когда речь идет об оценке и предсказании способностей отдельного человека.
* * *
Несходства в умственных способностях могут вызывать какие-то трудности, но обычно все-таки не являются катастрофическими. Однако другие типы умственно-психических различий связаны с ужасными страданиями и чрезвычайно дорого обходятся обществу. Среди населения развитых стран в среднем шесть человек из каждых ста имеют острое психическое расстройство, а почти каждый второй хоть раз в жизни испытывал менее значительное психическое недомогание. Большинство таких недугов лишь частично поддаются фармацевтическому лечению или поведенческой терапии, а для многих душевных болезней вообще пока нет методов лечения. Почему же так трудно бороться с психическими расстройствами?
Первооткрыватель того или иного заболевания обычно и первым описывает его симптомы. В 1530 году итальянский врач Джироламо Фракасторо использовал для этого необычную форму – эпической поэмы, которую он назвал «Syphilis sive morbus Gallicus» («Сифилис, или Французский недуг»). Он назвал болезнь в честь первого мужчины, который ее подхватил: согласно мифам и легендам, это был пастух Сифилус, и его покарал этим недугом сам бог Аполлон. В трех томах латинских гекзаметров Фракасторо описывает симптомы сифилиса, признает, что болезнь эта передается половым путем, и предлагает некоторые лекарства.
Сифилис вызывает отвратительные повреждения кожи и ужасные физические изменения. На более поздних стадиях может появляться еще один страшный симптом: умопомешательство. Мопассан в своем рассказе «Орля» (1887) описывает сверхъестественное существо, терзающее повествователя поначалу телесной, а затем и душевной болезнью: «Я погиб! Кто-то завладел моей душой и теперь управляет ею! Кто-то повелевает всеми моими действиями, движениями, мыслями. Я больше ничего для себя не значу, я лишь порабощенный и устрашенный зритель всего, что сам же совершаю». Рассказчик в конце концов решается положить конец своим страданиям, покончив с собой. По-видимому, история носит отчасти автобиографический характер, так как Мопассан сам страдал от сифилиса, которым заразился в двадцать с лишним лет. В 1892 году он попытался совершить самоубийство, перерезав себе горло. Писателя поместили в лечебницу для душевнобольных, где он через год и умер. Ему было всего сорок два года.
Художник Поль Гоген и поэт Шарль Бодлер, возможно, также страдали от сифилиса. Но твердого доказательства у нас нет, ибо никакое заболевание нельзя с уверенностью диагностировать, основываясь лишь на симптомах. У двух человек с одним и тем же недугом могут проявляться разные симптомы, а у двух человек с разными заболеваниями симптомы могут быть одни и те же. Бактерии, вызывающие сифилис, ученые открыли только в 1905 году. Вскоре появились и первые лекарства, уничтожающие эти бактерии. Такие лекарства оказались эффективны лишь на ранних стадиях развития болезни, однако не помогали избавиться от сифилиса, когда тот уже успевал вторгнуться в нервную систему. В 1927 году австрийский врач Юлиус Вагнер Яурегг получил Нобелевскую премию по физиологии и медицине за необычный способ лечения нейросифилиса. В дополнение к вводимым медикаментам он намеренно заражал пациентов малярией. Возникающая лихорадка каким-то образом расправлялась с бактериями сифилиса, после чего врач вводил больному антималярийные препараты. После Второй мировой на смену методу Вагнера-Яурегга пришел пенициллин и другие антибактериальные средства, названные антибиотиками. В наше время сифилис больше не является основной причиной заболеваний мозга.
Инфекционные заболевания сравнительно легко излечиваются, поскольку мы знаем их причину. Но как насчет других видов болезней? Болезнь Альцгеймера (БА), обычно поражающая пожилых людей, начинается с потери памяти, а затем приводит к деменции – старческому слабоумию и общей деградации умственных способностей. На более поздних стадиях развития болезни мозг усыхает, оставляя пустое пространство внутри черепа. Френологи, живи они сегодня, объясняли бы БА уменьшением размеров мозга, но это объяснение оказалось бы неудовлетворительным. Усыхание мозга происходит спустя долгое время после того, как появляются первые симптомы недуга – в частности, потеря памяти. Более того, сжатие мозга – скорее симптом, нежели причина болезни. Оно происходит из-за отмирания мозговых тканей, но что служит причиной их отмирания?
В поисках ответа ученые исследовали ткани, полученные при посмертном вскрытии тел пациентов, страдавших БА, и обнаружили микроскопические кусочки «мусора» – тромбы и бляшки, засоряющие мозг. Та или иная аномальность мозговых клеток, связанная с каким-то заболеванием, именуется нейропатологией. Тромбы появляются в мозгу задолго до гибели клеток, близко к тому моменту, когда у пациента начинают проявляться симптомы БА. Сегодня эти нейропатологии считаются определяющими характеристиками БА, поскольку деградация памяти и старческое слабоумие могут возникать и при других заболеваниях. Ученые пока не выяснили, что вызывает образование бляшек и тромбов, но они надеются, что снижение количества этих нейропатологий поможет при лечении БА.
Наиболее загадочные психические отклонения не связаны с какой-то конкретной и неизменной нейропатологией. Здесь мы пока в тупике. Такие недуги, по-прежнему определяемые лишь по психологическим симптомам, явно будут дольше всех прочих ждать методов исцеления. Возможно, к числу подобных симптомов принадлежит повышенная тревожность (как при панических состояниях или маниакально-депрессивном психозе) или резкие перепады настроения (как при депрессии или биполярных расстройствах не слишком острого характера). Среди наиболее разрушительных и изнурительных заболеваний – шизофрения и аутизм.
Симптомы аутизма весьма запоминающимся образом изложены в следующей клинической картине:
В три года Дэвиду поставили диагноз «аутизм». В этот период он почти не смотрел на людей, не говорил и, казалось, заблудился где-то в собственном мире. Он любил часами прыгать на батуте и великолепно собирал пазлы. К десяти годам Дэвид отличался хорошим физическим развитием, однако на эмоциональном уровне остался весьма незрелым. У него было очень красивое лицо с тонкими чертами… Он был и остается чрезвычайно упрямым в своей приязни и неприязни к кому-то или чему-то… Его мать часто вынуждена идти навстречу его настойчивым и неоднократным требованиям, легко переходящим во вспышки раздражения.
Дэвид научился говорить в пять лет. Сейчас он ходит в спецшколу для детей-аутистов, там он счастлив. У него выработался ежедневный график, который он никогда не меняет… Чему-то он учится чрезвычайно быстро и успешно. Например, читать он научился совершенно самостоятельно. Теперь он свободно читает, однако не понимает прочитанное. Кроме того, он обожает арифметические подсчеты. Однако другие навыки он осваивает крайне медленно: взять хотя бы прием пищи за общим семейным столом или одевание…
Сейчас Дэвиду двенадцать. Он никогда не вступает в игру с другими детьми, поддавшись минутному порыву. Он испытывает явные трудности в общении с малознакомыми людьми… Он не уступает их желаниям, не учитывает их интересы и точку зрения. В этом смысле Дэвид равнодушен к социуму, он продолжает пребывать в собственном мирке.
Этот характерный клинический случай включает в себя все три главных симптома аутизма: социальную неполноценность, языковые трудности и склонность к шаблонному (ритуализованному) или неуступчивому поведению. Симптомы эти обычно появляются еще до трехлетнего возраста и с годами часто слабеют, однако большинство взрослых аутистов неспособно нормально функционировать без какого-то внешнего надзора, присмотра и контроля. Среди известных на сегодня методов и лекарств для лечения аутизма нет ни одного по-настоящему эффективного.
Юта Фрит описывает аутизм более поэтично: она говорит о «прекрасном ребенке, заключенном в стеклянную скорлупу». Дети, страдающие многими другими врожденными недугами, надрывают сердце зримыми физическими дефектами. С аутистами не так: они зачастую выглядят отлично, а некоторые из них очень красивы. Их внешность обманывает родителей, которым трудно поверить, что с их детьми что-то не так. Родители тщетно надеются пробиться сквозь «стеклянную скорлупу» – социальную изоляцию аутиста – и высвободить из нее нормального ребенка. Но здоровое обличье ребенка-аутиста прячет под собою ненормальный мозг.
Наиболее документированная аномалия здесь – сами размеры мозга. Американский психиатр Лео Каннер одним из первых дал определение этого синдрома в своей эпохальной статье 1943 года. Он мимоходом заметил, что среди одиннадцати детей, типичных аутистов, у пятерых была крупная голова. В последующие годы специалисты изучили куда больше детей-аутистов и обнаружили, что их голова и мозг действительно крупнее среднего, особенно лобные доли, которые содержат много зон, отвечающих за социальное и языковое поведение.
Означает ли это, что размер мозга позволяет успешно предсказывать аутизм? Если бы это было так, мы могли бы с уверенностью утверждать, что френологи шли по верному пути, пытаясь найти объяснение причин аутизма. Но следует проявлять осторожность, иначе можно попасть в обычную статистическую западню, грозящую нам при рассмотрении редких категорий. Возьмем весьма особый тип людей – профессиональных футболистов. Они заметно крупнее среднего человека. Можем ли мы вывернуть это рассуждение наизнанку и предсказать: любой человек крупнее средних габаритов – скорее всего, профессиональный футболист? Такие умозаключения хорошо работают с так называемыми сбалансированными выборками населения – к примеру, с такими, где число футболистов равно количеству прочих людей. Если в такой выборке рассортировать население по росту, предсказания на его основе окажутся довольно точными. Но если рассматривать население в целом и заявлять, что любой его крупный представитель – футболист, вы окажетесь, скорее всего, неправы. Выяснится, что люди высоки, мускулисты или массивны по каким-то другим причинам, не связанным с игрой в футбол. Точно так же ненадежно и предсказание, согласно которому все дети с крупным мозгом являются аутистами. Чтобы играть в премьер-лиге, мало иметь впечатляющие физические габариты. Чтобы являться аутистом, недостаточно иметь крупный мозг.
Впрочем, СМИ частенько сообщают об исследованиях, чьи авторы претендуют на точное предсказание редких психических расстройств на основе того или иного свойства мозга. При тщательном изучении такие работы, как правило, оказываются менее впечатляющими, чем на первый взгляд, ибо подобные прогнозы надежны лишь для сбалансированной выборки, а не для населения в целом. Но если вам действительно известна причина недуга, то эта причина позволит ставить безошибочный диагноз даже в случае, когда вы имеете дело с населением в целом. Так и происходит для множества инфекционных заболеваний: их можно обнаружить благодаря анализу крови, выявляя наличие в ней определенных микробов.
* * *
Шизофрения – такое же загадочное отклонение, как и аутизм, она зачастую ставит ученых в тупик. Обычно она начинает проявляться в двадцать с чем-то лет – с внезапных острых галлюцинаций (обычно слуховых: больной слышит воображаемые голоса), маний (обычно это мания преследования) и хаотического мышления. Вот яркое описание подобных симптомов (в совокупности их именуют психозом) из первых рук:
Не могу вспомнить, что подтолкнуло меня к этому, но помню, что однажды, сидя в туалете, я почувствовал, как меня захлестывает волна адреналина. Сердце у меня застучало как бешеное. В моей голове зазвучали голоса ниоткуда, и мне показалось, что я словно бы мысленно настроился на какой-то всемирный телеканал, где рок-звезды и ученые свергали правительства посредством компьютеров, биологии, психологии и ритуала вуду. Именно сейчас!
Люди, беседовавшие на экране, объявляли о своих намерениях установить в мире новый порядок и о причинах, которые побуждают их это сделать. Похоже, я присутствовал при главной дискуссии между рок-героями и учеными. Участники этой беседы скрывались где-то в тайных местах по всему миру.
Психоз может привести жертву в ужас, вызвать беспокойство и тревогу окружающих. Такой психоз – наиболее очевидный признак шизофрении, однако им сопровождаются и другие психические заболевания. Поэтому для точной диагностики шизофрении необходимы и другие симптомы: например, недостаточная мотивированность поступков, слабо выраженные эмоции, деградация речи. Это «негативные» симптомы шизофрении: существуют и «позитивные», психотические. (Слова «негативные» и «позитивные» здесь не означают оценку, а указывают на беспорядочность мышления и на относительное отсутствие эмоций соответственно.) Шизофрению лечат препаратами, избавляющими от психоза, однако эти лекарства не дают полного исцеления. Большинству шизофреников, несмотря на терапию, все-таки не удается вести независимую, нормальную жизнь, обходясь без внешнего контроля и присмотра.
Как и в случае с аутизмом, наиболее документированная аномалия мозга шизофреников просто обязана иметь какое-то отношение к его размерам. Исследования с помощью МРТ показывают, что у таких больных общий объем мозга уменьшен в среднем всего на несколько процентов. Уменьшение гиппокампа – значительнее, но и оно невелико. Специалисты также получили изображение системы желудочков головного мозга – полостей, наполненных жидкостью. Боковой и третий желудочки у таких больных увеличены в среднем на 20 %. Так как желудочки представляют собой, по сути, пустоты в мозгу, их увеличение, возможно, как раз и связано с наблюдаемым сокращением объема собственно мозга. Мысль о том, что какое-то зримое различие все-таки нашли, очень обнадеживает, но эта корреляция слаба. Здесь та же история, что и со статистическими выкладками для аутистов. Диагностика шизофрении для конкретного человека по размерам его мозга, величине гиппокампа или объему мозговых желудочков будет чрезвычайно неточной.
Чтобы по-настоящему продвинуться в лечении аутизма и шизофрении, не помешало бы отыскать четкие, недвусмысленные и неизменные нейропатологии, связанные с этими недугами, подобно бляшкам и тромбам в случае болезни Альцгеймера. Но в мозгу аутистов и шизофреников, как правило, не происходит подобного неуклонного накопления «мусора», они не показывают и других признаков отмирания или дегенерации клеток. Неофренологи предполагают, что в мозгу таких больных существуют некие аномалии, но пока их обнаружить не удалось. В 1972 году нейрофизиолог Фред Плам в отчаянии написал: «Шизофрения – кладбище невропатологов». С тех пор исследователи нашли некоторые ключи к разгадке тайны, но реального прорыва, к сожалению, не произошло.
Большинство из нас убеждено: различие умов связано с различием мозгов. Но пока доказательств этого утверждения получено мало. Френологи пытались найти доказательство, изучая размеры мозга и его отдельных участков, но лишь недавно МРТ позволила осуществлять эту стратегию как следует. Неофренология подтвердила, что умственно-психические различия между людьми статистически связаны с размерами мозга, выявив слабые корреляции для групп людей. Однако эти различия в размерах не позволяют точно предсказывать гениальность, аутизм или шизофрению для отдельного человека.
Хочется, чтобы нейронаука выиграла этот поединок более убедительно. Ставки в игре высоки. Обнаружение нейропатологий для аутизма и шизофрении, возможно, будет способствовать успешному поиску эффективных путей лечения этих недугов. Понимание того, что делает мозг умным, могло бы помочь нам разрабатывать более действенные педагогические методы и другие инструменты для того, чтобы делать людей смышленее. Мы хотим не просто понять мозг. Мы хотим изменить его.
Глава 2 Пограничные конфликты
Господи, дай мне спокойствие, чтобы принять то, что я не могу изменить, храбрость, чтобы изменить то, что могу, и мудрость, чтобы отличать одно от другого.
Молитву о ниспослании спокойствия и прочего с давних пор взяли на вооружение «Анонимные алкоголики» и другие организации, помогающие своим участникам избавляться от пагубных зависимостей. Эти четыре строчки ясно показывают, почему мы так зачарованы собственным мозгом: мы постоянно надеемся изменить его. Окиньте взглядом шкаф с «самоучителями жизни» в ближайшем книжном магазине. Вы увидите сотни томов, где объясняется, как меньше пить, как соскочить с наркотиков, как правильно питаться, как обращаться с деньгами, как воспитывать детей, как сохранить брак. Как будто ничего сложного, но на деле все оказывается совсем не так уж просто… Конечно же, и нормальным, здоровым взрослым людям тоже порой хочется изменить собственное поведение, но эта цель имеет куда более важное значение для тех, кто страдает психическими заболеваниями и расстройствами. Можно ли молодого человека излечить от шизофрении – если не в наши дни, то когда-нибудь? Может ли дедушка, перенесший инсульт, снова научиться говорить? Кроме того, все мы хотим, чтобы школьное обучение и внешкольное воспитание формировали юные умы, совершенствуя их. Можно ли улучшить методы такого формирования?
Молитва о спокойствии просит храбрости и мудрости по отношению к переменам. Сумеет ли более четкие ответы дать нейронаука? В конце концов, изменение ума и сознания – это же в конечном счете изменение мозга. Впрочем, нейронаука не поможет нам в самосовершенствовании, не ответив прежде на основополагающий вопрос: каким именно образом меняется мозг, когда мы учимся вести себя по-новому?
Родители восторгаются быстротой развития своих чад, торжественно отмечая каждое новое действие или слово, которым те научились, словно это некое волшебство. Мозг маленького ребенка растет весьма стремительно, он достигает взрослых размеров к двухлетнему возрасту. Отсюда простенькая мысль: возможно, обучение – это не более чем рост мозга, и детей можно сделать умнее, этому росту способствуя.
Эта идея тоже родилась еще у френологов. Иоганн Спурцхайм заявлял, что умственная гимнастика способствует увеличению кортикальных органов, подобно тому как мышцы вздуваются от физических упражнений. На основании своей теории Спурцхайм создал целую философию образования как для детей, так и для взрослых.
Его теория подверглась научной проверке лишь спустя век с лишним. К тому времени психологи успели разработать методы изучения воздействия разного рода стимуляции на сознание животных. Так, подопытных крыс помещали в две разных среды: одна – «скучная», вторая – «обогащенная». В скучной клетке существование одинокой крысы скрашивали лишь емкости с водой и пищей. В обогащенном жизненном пространстве множество крыс жили вместе, и каждый день им давали новые игрушки. Гоняя крыс по несложным лабиринтам, ученые выяснили, что крысы из «обогащенной» среды явно смышленее своих товарок из простых клеток. Вероятно, мозг у них отличается, но как именно?
В 1960-х годах Марк Розенцвейг с коллегами решили это выяснить. Они применяли необычайно простой метод: взвешивали кору головного мозга подопытных крыс. Как выяснилось, пребывание в обогащенной среде, как правило, приводит к небольшому увеличению объема коры. Так впервые было экспериментально показано, что жизненный опыт вызывает изменения структуры мозга.
Скорее всего, вас это не удивило. В конце концов, мы с вами уже знаем о МРТ-исследованиях, которые показали, что у лондонских таксистов, у музыкантов и у двуязычных людей некоторые участки мозга увеличены по сравнению с прочим населением. Но не следует слишком полагаться на подобные статистические выкладки. Анализ методом МРТ выявил корреляцию, но не доказал прямую причинно-следственную связь.
Действительно ли вождение такси, игра на музыкальном инструменте или владение вторым языком вызывают увеличение мозга или его отдельных частей, как предполагает теория Спурцхайма? Можно было бы заявлять о причинно-следственной связи, если бы мозг музыкантов и немузыкантов вообще не отличался до начала занятий музыкой, а различия появлялись лишь после таких занятий. Но МРТ получала лишь данные касательно этого «после», а потому не исключена и альтернативная интерпретация: возможно, у некоторых с рождения имеется определенным образом увеличенный мозг, способствующий музыкальным талантам, и эти одаренные люди с большей вероятностью становятся впоследствии музыкантами. Именно увеличенный мозг – причина того, что эти люди начинают заниматься музыкой, а не наоборот.
Среди музыкантов можно проводить отбор по врожденному таланту, что и делают преподаватели или организаторы конкурсов. Музыканты могут и сами себя отбирать: человек обычно предпочитает заниматься тем, что у него хорошо получается. Такая проблема, названная погрешностью отбора, усложняет интерпретацию результатов многих статистических исследований. Розенцвейг устранял погрешность отбора, случайным образом рассаживая крыс по клеткам – «обогащенной» и «скучной». Таким образом, можно с уверенностью сказать, что в начале эксперимента обе группы крыс были статистически идентичны, что позволило ученому заключить: любые изменения, возникшие у них после пребывания в клетках, вызваны этим пребыванием.
Для более непосредственной демонстрации такой причинно-следственной связи можно с помощью МРТ сравнить человеческий мозг до и после какого-то переживания, до и после приобретения какого-нибудь опыта или навыка. Исследователи установили, что при обучении жонглированию шариками утолщается кора теменных и височных долей головного мозга. При обследовании группы студентов-медиков выяснилось, что усиленная подготовка к экзаменам вызывает у них увеличение объема коры в теменной области и увеличение объема гиппокампа.
Это впечатляющие результаты, но хотим мы все-таки другого. Таких данных недостаточно, чтобы продемонстрировать: приобретаемый опыт действительно меняет наш мозг. Кроме того, хотелось бы знать, являются ли изменения мозга причиной совершенствования наших способностей. Чтобы понять, отчего четких доказательств пока не получено, рассмотрим следующую аналогию. Допустим, обучение музыке делает музыкантов более тучными, поскольку они ведут сидячий образ жизнь, постоянно репетируя с утра до вечера. Ошибкой было бы заключить, что эта полнота служит причиной развития музыкальных талантов. Точно так же, показав, что занятия музыкой увеличивают мозг музыкантов, мы не доказываем, что этот рост мозга служит причиной того, что они лучше играют на своем инструменте.
Розенцвейг продемонстрировал, что обитание в обогащенной клетке делает крыс смышленее и при этом утолщает кору их головного мозга. Однако он не доказал, что именно это утолщение служит причиной роста уровня крысиного интеллекта. Вообще-то такая связь кажется маловероятной, если вспомнить то, что нам известно о функциях кортикальных участков мозга. Как полагают специалисты, лобные доли играют важную роль в таких навыках, как умение ориентироваться в лабиринте, но как раз лобные доли у этих крыс не увеличивались или же увеличивались весьма незначительно. Больше всего увеличивалась затылочная доля, а она отвечает за зрительное восприятие.
И потом, нельзя однозначно связать утолщение коры с обучением. Можно сказать лишь, что эти два явления коррелируют между собой. Да и корреляция эта слаба, она существует лишь на уровне усредненных данных по группам подопытных объектов. Кортикальное утолщение не позволяет делать надежные предсказания касательно обучения, когда речь идет об отдельных существах.
* * *
А возможно, такое изучение бега крыс по лабиринту или жонглирования – подход неверный. Не исключено, что нам следовало бы рассматривать более существенные и резкие изменения. Так, непосредственно после инсульта больной часто испытывает слабость или вообще оказывается парализован. Он может утратить дар речи и другие умственные способности. Многие пациенты в течение нескольких месяцев достигают значительного улучшения. Что при этом происходит с мозгом? Исследования, призванные дать ответ на этот вопрос, имеют очевидное практическое значение, поскольку они могут помочь нам разработать более эффективные методы лечения.
Рис. 11. Кора мозга. Карта Бродмана
Инсульт возникает при закупорке или разрыве кровеносных сосудов мозга. Симптомы болезни часто указывают на то, какая сторона мозга повреждена. Если пациент отчаянно пытается контролировать одну сторону тела (как часто бывает при инсульте), это означает, что затронута другая сторона мозга, так как каждая половина мозга управляет мышцами противоположной стороны тела. Неврологи могут иногда и более точно указать, какой участок мозга пострадал. Чтобы описать местонахождения кортикального повреждения, специалист точно укажет долю, а если нужна более высокая точность, то и определенную складку доли. Складки носят причудливые имена – к примеру, «верхняя височная извилина»: это самая верхняя складка височной доли. Кортикальный участок, напротив, обозначают обычно цифрой, а не словами. При этом используют карту, опубликованную в 1909 году немецким нейроанатомом Корбинианом Бродманом (рис. 11). Далее я буду использовать термин поле, говоря об областях на карте Бродмана, и участок, когда речь пойдет о любых других подразделениях мозга.
Причиной деградации памяти после инсульта может служить повреждение полей 4 и 6. Поле 4 – самая задняя полоска лобной доли, оно расположено перед центральной бороздой. Поле 6 находится перед полем 4. Оба, как выяснили ученые, играют важную роль в контроле движений. Инсульт часто разрушает и речевые навыки, что служит признаком повреждения центра Брока (поля 44 и 45) или центра Вернике (задняя часть поля 22), оба центра находятся в левом полушарии.
Друзья и близкие больных мучительно хотят узнать, насколько возможно какое-то восстановление после инсульта. Будет ли дедушка снова ходить? А разговаривать? Двигательные функции жертв инсульта имеют тенденцию улучшаться со временем, но после трех месяцев это улучшение практически прекращается. Речевые навыки также восстанавливаются быстрее всего именно в ходе этих первых трех месяцев, хотя процесс может продолжаться еще месяцами или даже годами. Неврологам известно о важности этого трехмесячного периода, однако они толком не знают, почему в эти три месяца происходят столь интенсивные процессы. Но главное – они понятия не имеют, какие изменения происходят в мозгу пациента во время послеинсультной реабилитации.
Очевидно, при этом восстанавливаются функции пораженного участка мозга, целиком или частично. Однако при инсульте некоторые клетки мозга, расположенные близ поврежденного кровеносного сосуда, попросту отмирают, тем самым нанося непоправимый и необратимый ущерб организму. Могут ли уцелевшие участки мозга взять на себя задачу дефектного участка? Представим себе, что во время футбольного матча один из игроков получил мучительную травму, и его унесли с поля. На скамейке не осталось запасных, так что команда, которой теперь не хватает рабочих рук (вернее, ног), будет действовать хуже. Однако по ходу дальнейшего матча оставшиеся футболисты могут адаптироваться к возникшей ситуации. Если до травмы их товарищ занимал атакующую позицию, защитники могут компенсировать утрату, начав выступать и как нападающие.
Таким образом, возникает чрезвычайно важный вопрос: может ли какая-то кортикальная область взять на себя новые функции после повреждения мозга? Есть некоторые свидетельства, подтверждающие, что такое возможно после инсульта. Более веские доказательства дают случаи детских черепно-мозговых травм и заболеваний. Так, эпилепсия характеризуется постоянными спонтанными припадками – эпизодами избыточной нейронной активности. Детей, страдающих особенно частыми и изнурительными припадками, иногда пытаются лечить, целиком удаляя одно полушарие головного мозга. Это едва ли не самая радикальная процедура в нейрохирургии, и поразительно уже то, что большинство детей после нее отлично восстанавливается: они ходят и даже бегают, хотя рука с противоположной удаленному полушарию стороны двигается у них плохо. Умственные способности при этом остаются не затронутыми и могут даже улучшиться после такой операции – если от припадков удалось избавиться.
Кое-кто может заметить, что успешное восстановление после удаления одного полушария – не самая удивительная вещь. Возможно, это как утрата одной почки. Оставшейся почке нет нужды заниматься чем-то новым для себя, она в общем-то действует, как раньше. Но вспомните, что некоторые из умственных функций латерализованы (привязаны к конкретному полушарию мозга), так что левая и правая стороны мозга не эквивалентны. Поскольку левое полушарие специализируется на речевых навыках, его удаление почти наверняка вызовет у взрослого человека афазию. Но для ребенка это не так: лингвистические функции переместятся в правое полушарие, тем самым демонстрируя, что области коры головного мозга действительно способны менять свои функции.
С учетом того, что нам известно о локализации, не стоит удивляться тому, что неврологи умеют догадываться о мес то нахождении поврежденного участка мозга по симптомам. Впрочем, тут есть важное «да, но», которое вас, возможно, удивит. Да, можно построить карту, делящую кору на области с определенными функциями, но эта карта не будет постоянной. Пораженный мозг способен вычертить эту карту заново.
* * *
Такое перекраивание карты коры головного мозга после инсульта или операции, осуществляемое самим же мозгом, оказывается куда радикальнее, чем просто утолщение коры, о котором сообщают неофренологи. Может ли перестраивание коры происходить и в здоровом мозгу? Опять-таки, ответ на этот вопрос помогает получить изучение серьезных повреждений – но тела, а не мозга. Вот что пишет в одной из своих статей нейробиолог Мигель Николелис:
Как-то утром, когда я был на четвертом курсе медицинского колледжа, хирург из Университетской больницы бразильского Сан-Паулу, специализировавшийся по сосудистым заболеваниям, пригласил меня посетить ортопедическую палату. «Сегодня будем общаться с призраком, – пообещал врач. – Но не бойтесь. Постарайтесь сохранять спокойствие. Пациент еще не сумел принять то, что с ним случилось, и сильно потрясен».
В этой палате я увидел мальчика двенадцати лет, у него были мутно-голубые глаза и курчавые светлые волосы. Он сидел передо мной. Капли пота усеивали его лицо, искаженное гримасой ужаса. Он весь корчился от боли неизвестного происхождения. «Ужасно больно, доктор. Жжет. Мне как будто ногу дробят», – пожаловался мальчик. Горло у меня стиснуло от жалости. «Где болит?» – спросил я. Он ответил: «Левая ступня, левая лодыжка, вся нога ниже колена!»
Подняв простыни, которые прикрывали его тело, я с ошеломлением увидел, что ноги ниже колена у него вообще нет: оказывается, ее ампутировали, после того как он попал под машину. Я понял, что это фантомная боль – от части тела, которой больше не существует. Когда мы вышли из палаты, хирург заметил: «С нами говорил не он, а его призрачная конечность».
Методы ампутации, применяемые и по сей день, изобрел еще в XVII веке Амбруаз Паре, усовершенствовавшийся в своем искусстве во время службы хирургом при французской армии. Паре родился во времена, когда операции делали брадобреи, поскольку эти процедуры казались грубой мясницкой работой, недостойной врача. Работая на поле битвы, Паре научился перехватывать крупные артерии, чтобы пациент не истек кровью. В дальнейшем Паре стал придворным хирургом при французских королях (он пережил их несколько). Учебники истории называют его «отцом современной хирургии».
Паре первым сообщил о пациентах, подвергшихся ампутации и жалующихся на то, что по-прежнему ощущают боли в воображаемой конечности, причем на том месте, где когда-то болела настоящая. Несколько столетий спустя американский врач Сайлас Вейр Митчелл ввел термин «фантомная конечность», описывая такое же явление у ветеранов Первой мировой войны. Он разбирает множество характерных случаев, показывавших, что фантомные конечности у инвалидов – скорее правило, чем исключение. Почему же этот феномен так долго не замечали? Дело в том, что до хирургических новшеств, внедренных Амбруазом Паре, после ампутации выживали весьма немногие, а жалобы тех немногих, кто все-таки выжил после такой операции, по-видимому, считали всего лишь результатом какой-то галлюцинации, поэтому врачи пренебрегали такими рассказами. Однако в этом явлении нет ничего иррационального: инвалид отлично понимает, что фантомное – это не реальное, однако фантомная конечность обычно причиняет сильную боль, вот пациент и умоляет докторов избавить его от страданий.
Митчелл не только дал явлению название, он еще и выдвинул теорию, которая пыталась это явление объяснить. Врач предположил, что раздраженные нервные окончания культи посылают сигналы в мозг, который интерпретирует их как сигналы, поступающие от утраченной конечности. Под влиянием этой теории некоторые хирурги начали ампутировать и культю, но это не помогло. В наши дни многие нейрофизиологи придерживаются иной теории: фантомные боли вызваны перестраиванием коры головного мозга – меняется ее карта.
Такая реорганизация не затрагивает всю кору: полагают, что процесс сосредоточен в какой-то определенной области. Мы уже знакомы с полем 4, полоской перед центральной бороздой: эта область контролирует движение. Непосредственно за ним располагается поле 3, отвечающее за ощущение прикосновения, температуры и боли. В 1930-х годах канадский нейрохирург Уайлдер Пенфилд при помощи электростимуляции построил для своих пациентов карту обеих областей. Вскрыв перед операцией череп больного эпилепсией, Пенфилд подносил электрод к различным точкам поля 4. Каждое такое воздействие заставляло двигаться какую-то часть тела пациента. Пенфилд нанес на карту соответствия между точками поля 4 и этими частями тела (рис. 12, справа), назвав полученное изображение «моторным гомункулусом». (Слово «homunculus» в буквальном переводе с латыни означает «человечек».) Подобным же образом после каждого акта стимуляции поля 3 пациент сообщал об ощущениях, которые испытывает какая-то часть его тела. Пенфилд нанес на карту этого «сенсорного гомункулуса» поля 3 (рис. 12, слева), и человечек получился похожим на моторного. Оба как бы шли параллельно по противоположным берегам центральной борозды. (Грубо говоря, эти карты представляют вертикальные разрезы – проекции мозга от уха до уха. Разрез для сенсорной карты проходит сразу за центральной бороздой, а для моторной – непосредственно перед этой бороздой. Внешняя граница – кора; всё остальное – внутренняя часть конечного мозга.)
Рис. 12. Функциональные карты кортикальных полей 3 и 4: «сенсорный гомункулус» (слева) и «моторный гомункулус» (справа)
На таких картах основное место занимают лицо и кисти рук, хотя это сравнительно небольшие части тела. Их особая кортикальная роль отражает их особую важность для наших ощущений и движений. Могут ли размеры соответствующих им участков коры меняться после ампутации, которая внезапно сводит к нулю значимость определенной части тела? Задавшись таким вопросом, невролог В. С. Рамачандран и его коллеги предположили, что причина мнимого возникновения фантомных конечностей – перекраивание карты поля 3. Если ампутировать руку ниже локтя, то соответствующая ей территория сенсорного гомункулуса утратит свою функцию. Прилегающие территории, которые отвечают за лицо и часть руки от плеча до локтя, расширят свои границы и как бы захватят ту территорию, которая перестала действовать. (Эти границы можно увидеть на рисунке Пенфилда.) Два «захватчика» теперь начнут представлять часть руки ниже локтя – в придачу к тем частям тела, за которые они отвечали изначально. Вот почему инвалид начнет чувствовать фантомную конечность.
Согласно этой концепции, при таком перестраивании карты определенная территория коры, соответствующая лицу, теперь будет отвечать не только за лицо, но и за часть руки ниже локтя. Поэтому Рамачандран предположил, что тактильная стимуляция лица вызовет тактильные ощущения в фантомной конечности. И в самом деле: когда он касался лица пациента специальной палочкой, обтянутой хлопчатобумажной тканью, тот сообщал об осязательных ощущениях, которые испытывало не только лицо, но и фантомная кисть. Сходным образом эта теория предсказывает, что перекроенная территория коры, соответствующая части руки от плеча до локтя, в таких случаях будет представлять и нижнюю часть руки. Когда Рамачандран трогал культю такого пациента, у того возникали осязательные ощущения не только в культе, но и в фантомной кисти. Эти хитроумные эксперименты весьма впечатляюще подтверждают теорию, согласно которой ампутация вызывает перекраивание поля 3.
* * *
Рамачандран и его коллеги использовали не только палочку, обтянутую хлопчатобумажной тканью, но и более передовые методики и технологии. В 1990-е годы в научный обиход вошел многообещающий метод построения изображений мозга – функциональная МРТ. Она позволяла регистрировать активность каждого участка мозга, т. е. определять, насколько задействована та или иная часть мозга в данный момент. В наши дни изображения, полученные методом ФМРТ, часто появляются в прессе. Обычно дают их наложение на черно-белые картинки, полученные при помощи обычной МРТ: они демонстрируют сам мозг, тогда как цветные пятна, полученные методом ФМРТ, показывают его активные участки. Такие снимки легко узнать: ФМРТ + МРТ – это «пятна на мозге», а МРТ – просто мозг, без цветных пятен.
Ученые строили изображения мозга для добровольцев, выполнявших различные умственные задания. Если то или иное задание активизировало определенный участок мозга, тот начинал ярче выделяться на картинке, что давало ключ к пониманию функций этого участка. Развитие нейрофизиологии всегда сдерживалось случайным и непредсказуемым характером повреждений мозга, однако ФМРТ дала возможность проводить точные и воспроизводимые эксперименты по выявлению локализации функций. Карта Бродмана стала поистине незаменимой: исследователи прилагали все усилия, чтобы соотнести те или иные функции с каждой из ее областей. Лавина научных статей, посвященных этому вопросу, побудила многие университеты вложить крупные суммы в аппараты ФМРТ – «мозговые сканеры».
Кроме того, ученые, следуя подходу Пенфилда, построили свои карты сенсорного и моторного гомункулуса. Они заметили, какие места в поле 3 активизируются при прикосновении к тем или иным частям тела и какие места в поле 4 активизируются, когда испытуемый двигает той или иной частью тела. Их очень вдохновило то, что теперь можно строить пенфилдовские карты с помощью ФМРТ, а не варварским методом вскрытия черепной коробки. Исследовали и перестраивание карты мозга (которое проделывает сам мозг). Ученые подтвердили гипотезу Рамачандрана о том, что зона поля 3, соответствующая лицу, у инвалидов смещается вниз. Как и предсказывала его гипотеза, такой сдвиг наблюдался лишь у пациентов, которые испытывали фантомные боли, а не у тех, которым не доставляли страданий их утраченные конечности.
Ампутация – это вам не мозговая травма, но все-таки она представляет собой весьма необычный опыт. А при более нормальных формах приобретения опыта мозг тоже меняет свою «географию»? Скрипачи и другие струнники используют левую руку, чтобы прижимать струны к грифу. Исследования показывают, что у них в поле 3 наблюдается увеличение зоны представления левой руки – вероятно, благодаря интенсивным занятиям музыкой. Примечательно, что ФМРТ позволяет не только связать определенные функции с определенными бродмановскими полями, но и распознать мелкие изменения, происходящие в отдельном поле. Это куда более сложные исследования, чем, к примеру, изучение общего объема мозга по Гальтону. Такие работы должны бы поведать нам много интересного о перестраивании коры и кортикальных карт. Возможно даже, что подобные исследования помогут лучше понять причины двигательных расстройств, которые, как представляется, вызваны слишком большой музыкальной практикой. Подобные недуги (их называют фокальными [торсионными] дистониями) поломали карьеру не одному блистательному исполнителю.
Впрочем, попытки объяснить процесс обучения расширением кортикальных областей или субобластей все-таки отдают френологией, чьи подходы не очень-то отличаются от экспериментов по изучению утолщений коры. Эти опыты все равно дают лишь статистически слабые корреляции. Подход, может быть, и многообещающий, но у него есть свои ограничения. Так, у слепых, регулярно читающих шрифт Брайля, тоже увеличена зона, отвечающая за движения кистей. В этом смысле изучение процессов перестраивания мозговых карт не позволяет с легкостью отличить скрипку от книги с брайлевским текстом, хотя при обращении с тем и с другим требуются весьма несходные навыки и умения. И даже если удастся решить эту конкретную задачу, общая проблема такого различения все равно останется.
Однако у специалистов имеется и другой путь изучения перемен в мозгу, и он не основывается на идее перестраивания коры. При помощи ФМРТ ученые пытаются проследить за различиями в активизации тех или иных участков мозга. Так, сообщалось о пониженной активности лобных долей у шизофреников, когда те выполняют определенные умственные задания. Пока такие корреляции статистически слабы, но это захватывающее направление исследований может многое рассказать нам о мозговых недугах и даже помочь разработать новые, более совершенные методы их диагностики.
При этом у метода ФМРТ, возможно, имеется и фундаментальное ограничение. Активность мозга меняется чуть ли не ежесекундно – почти как наши мысли и действия. Чтобы найти причину шизофрении, мы должны принять какую-то аномалию мозга за константу (постоянную величину). Представьте, что ваш автомобиль начинает трястись всякий раз, когда вы разгоняетесь быстрее 50 км/ч и поворачиваете руль вправо. Поскольку такое поведение наблюдается не всегда, оно представляет собой лишь симптом и вызвано какими-то неполадками в вашей машине, возникшими на более глубинном уровне. Умение выявить симптомы очень важно, однако это лишь первый шаг к тому, чтобы распознать их причину.
* * *
Почему мы вообще продолжаем использовать френологический подход для того, чтобы объяснить умственно-психические различия между людьми? Нет, не потому, что эта стратегия так уж хороша. Помните анекдот про полицейского, который обнаружил пьяного, ползающего под фонарем? Пьяница заявляет: «Я потерял ключи где-то там, за углом». Страж порядка спрашивает: «Тогда почему бы вам не поискать их там?» Бедняга отвечает: «Я бы поискал, но под фонарем светлее». Подобно этому пьянице, мы работаем с тем, что есть. Мы знаем, что размеры мозга и его отдельных участков мало что могут сообщить нам об их функциях, но мы все равно изучаем размеры, поскольку существующие на данный момент технологии способны поведать нам только это.
Чтобы понять недостатки френологии, приведем пример более успешной привязки функций к размерам. Оставим пока вопрос о том, почему мозговитые люди умнее. Зададимся вопросом, почему мускулистые люди сильнее. Размер мышц можно определить с помощью всё той же МРТ, а мышечную силу – с помощью устройства, которое вы могли видеть в тяжелоатлетическом зале вашего фитнес-клуба. Специалисты установили, что коэффициенты корреляции здесь колеблются от 0,7 до 0,9. Это гораздо более сильная корреляция, нежели между размером мозга и величиной IQ. Размеры мышц позволяют точно предсказывать их силу, как и следовало ожидать.
Почему размер и функционирование так тесно связаны для мышц, но не для мозгов? Мышцу можно сравнить с заводом, где все рабочие делают одно и то же. Если каждый сотрудник завода в одиночку выполняет все стадии работы, которые требуются для сборки всего изделия, то удвоение количества сотрудников приведет к удвоению объема продукции, выпускаемой заводом. Точно так же и с мускулами. Все мышечные волокна выполняют одну и ту же задачу. Все они идут параллельно, все тянут в одну и ту же сторону. Их вклад в общее развиваемое усилие аддитивен (иными словами, сумма их усилий равно общему усилию). Поэтому мышцы, где больше волокон, будут сильнее.
А теперь представьте себе завод, устроенный более сложным образом. Все рабочие на нем выполняют разные задачи: к примеру, один закручивает болты, другой сваривает стыки. Чтобы изготовить даже один-единственный экземпляр изделия, все рабочие должны действовать сообща. Экономисты утверждают, что такое разделение труда эффективно: специализация позволяет каждому рабочему оттачивать навыки в выполнении своей задачи. Однако при этом простое удвоение числа рабочих едва ли приведет к автоматическому удвоению количества выпускаемой продукции. Не так-то просто интегрировать новых рабочих в существующий коллектив таким образом, чтобы выход продукции увеличился. Более того, добавление новых сотрудников может даже уменьшить выход продукции, поскольку оно нарушит устоявшийся производственный процесс. Шуточный закон Брукса, популярный среди разработчиков компьютерного софта, гласит: «Если проект отстает от графика, он будет отставать еще сильнее, если увеличить число программистов».
Мозг работает, как сложно устроенный завод, о котором мы говорили. Каждый из нейронов выполняет свою крошечную задачу, и они затейливейшим образом сотрудничают друг с другом, чтобы выполнять умственно-психические функции. Вот почему успешность выполнения этих функций зависит не столько от количества нейронов, сколько от того, как они организованы.
Итак, аналогия с заводом объясняет те ограничения, в рамках которых существует френология. Может быть, эта аналогия объяснит и перестраивание карт мозга? Карл Лешли, американский нейропсихолог, полагал, что умственно-психические функции широко распределены по коре головного мозга, и объявлял большинство границ на бродмановской карте плодом воображения. Тем не менее этот заклятый враг локализационизма не мог совсем уж отвергнуть экспериментальные доказательства этой гипотезы. В противовес ей он в 1929 году выдвинул свою концепцию кортикальной эквипотенциальности (равноценности). Лешли соглашался допустить, что каждая область коры отвечает за определенную функцию, но при этом каждая область, утверждал он, обладает потенциалом для приобретения и какой-то другой функции.
Снова представим себе завод, но другой, устроенный сложнее. Предположим, какому-то сотруднику этого завода поручили новую работу. Поначалу он будет выполнять ее неловко и неуклюже, но в конце концов научится делать ее эффективно. Да, у рабочих есть специализация, но при этом они эквипотенциальны. Если дать им новую информацию, они способны изменить свои функции.
Что ж, в концепции Лешли есть доля истины, однако и этот подход чересчур поверхностен. Адаптируемость коры не беспредельна, иначе всякий человек, переживший инсульт, через какое-то время мог бы полностью выздороветь. Чтобы понять пределы адаптации и разработать способы ее улучшения, нам требуется более глубокое понимание вопроса. Мы знаем, что кора головного мозга способна сама перестраиваться и менять собственную карту, но как именно при этом меняются функции той или иной области коры?
На этот вопрос нельзя ответить без обращения к более основополагающей проблеме: что определяет функции той или иной кортикальной области? Центры Брока и Вернике отвечают за речевые навыки, бродмановские поля 3 и 4 – за телесные ощущения и движение. Но почему именно за эти функции? И как осуществляется эта привязка функций к конкретным участкам коры?
Бесполезно искать ответы на эти вопросы, изучая лишь участки мозга, их размеры, уровни их активности. Следует рассмотреть устройство мозга на гораздо более тонком уровне. Одна кортикальная область может содержать свыше ста миллионов нейронов. Как они организованы? Как взаимодействуют, выполняя умственно-психические функции? В последующих нескольких главах мы постараемся углубиться в этот вопрос, не забывая о гипотезе, согласно которой функционирование мозга весьма сильно зависит от связей между нейронами.
Часть вторая
Коннекционизм
Глава 3
Нет нейрона, который был бы как остров
В списке моих любимых клеток нейрон занимает второе место, ненамного отставая от сперматозоида. Если вы никогда не смотрели в микроскоп на бешено снующие туда-сюда сперматозоиды, срочно хватайте своего знакомого биолога за отвороты рабочего халата и требуйте устроить вам просмотр. Восхититесь настойчивостью этих замечательных клеток – ведь им нужно выполнить свою задачу как можно скорее. Поскорбите об их неминуемой гибели. Поразитесь феномену жизни, обнаженной до самых своих основ. Подобно путешественнику с единственным чемоданчиком, сперматозоид мало что носит с собой. У него есть митохондрии, своего рода крошечные электростанции, позволяющие ему хлестать хвостом, как хлыстом. У него имеется ДНК – молекула, несущая в себе план-схему жизни. Ни волос, ни глаз, ни сердца, ни мозга: в этот путь он не захватил ничего лишнего, только информацию, записанную в ДНК с помощью четырехбуквенного алфавита из А, Г, Ц и Т.
Если вы еще не надоели вашему другу-биологу, попросите заодно показать вам и нейрон. Сперматозоид поражает своим непрестанным движением, а нейрон чарует своей удивительной формой. Как и у обычной клетки, у нейрона имеется скучная округлая часть, где находится ядро и ДНК. Но это тело клетки – лишь малая часть картины. От него отходят длинные узкие отростки, которые ветвятся снова и снова, как у дерева. Сперматозоид строен и минималистичен, нейрон же – это барокко и орнаментализм микромира (см. рис. 13).
В стомиллионной толпе сперматозоидов каждый из них плывет самостоятельно. И своей цели – оплодотворить яйцеклетку – добьется только один. В этом соревновании победитель получает всё. Как только сперматозоид-победитель достигает успеха, яйцеклетка меняет свою поверхность, создавая барьер, который препятствует проникновению других сперматозоидов. И неважно, что свело их вместе – счастливый брак или грязная интрижка: сперматозоид и яйцеклетка всегда образуют моногамную пару.
Рис. 13. Мои любимые клетки: сперматозоид, оплодотворяющий яйцеклетку (слева); нейрон (справа)
Однако нет нейрона, который был бы как остров[6 - Отсылка к знаменитому стихотворению Джона Донна, ставшему эпиграфом к не менее знаменитому роману Хемингуэя «По ком звонит колокол»: «Нет человека, который был бы как остров…»]. Нейроны любвеобильны и полигамны. Каждый обнимает тысячи других при помощи своих ветвей, извивающихся и переплетающихся, словно спагетти. Так нейроны образуют сеть, все элементы которой в высочайшей степени взаимозависимы.
Сперматозоид и нейрон олицетворяют собой две великих загадки – жизни и разума. Биологам хочется узнать, каким образом бесценный груз ДНК, содержащийся в сперматозоиде, кодирует половину всей информации, необходимой для человеческого существа. Нейробиологам хочется узнать, каким образом гигантская сеть нейронов может думать, чувствовать, помнить и воспринимать – иными словами, как мозг создает потрясающий феномен мышления.
Тело человека тоже по-своему удивительно, однако мозг в нем – главная тайна. То, как сердце качает кровь, или то, как легкие набирают воздух, напоминает нам коммунальные системы в нашем доме. Может быть, эти системы и сложны, но они не кажутся нам загадочными. Вот мысли и эмоции – другое дело. Можем ли мы по-настоящему понять, каким образом их порождает мозг?
* * *
Путь в тысячу миль начинается с одного шага. Чтобы попытаться понять мозг, попробуем начать с его клеток. Нейрон – тоже разновидность клетки, только он устроен гораздо сложнее, чем все остальные типы клеток. Это ясно уже по его обильным ветвям. Даже после многих лет изучения нейронов я не устаю поражаться, наблюдая их удивительные формы. Они напоминают мне самое могучее дерево на свете – калифорнийское мамонтово дерево (секвойю). Бродя по лесу Муир или по какому-нибудь другому лесу тихоокеанского побережья Северной Америки, в котором произрастают секвойи, чувствуешь себя карликом среди великанов. Там мы видим деревья, которые живут уже несколько веков или даже тысячелетий: у них было достаточно времени, чтобы вырасти до головокружительной высоты.
Может быть, мое сравнение нейрона с гигантской секвойей чересчур натянуто? Может быть, в нем есть преувеличение? Если говорить об абсолютных размерах, то да. Но давайте подробнее сопоставим эти два чуда природы. Самые крошечные веточки секвойи имеют толщину всего один миллиметр. Это в 100 тысяч раз меньше, чем высота дерева (примерно равная длине футбольного поля). Отросток нейрона, нейрит, может тянуться от одного края мозга до другого, имея при этом всего 0,1 мм в диаметре. Эти величины отличаются в миллион раз. Так что, если говорить об относительных пропорциях, нейрон оставляет секвойю далеко позади.
Но почему у нейронов вообще есть отростки? И почему эти отростки ветвятся, делая нейрон действительно похожим на дерево? Почему ветки есть у секвойи, понятно. Крона мамонтова дерева ловит свет, который является источником энергии для всех растений. Падающий луч света почти наверняка столкнется с каким-то из листьев, а значит, не пролетит до самой земли беспрепятственно. С нейронами дело обстоит сходным образом. Нейрон имеет такую разветвленную форму, чтобы успешнее налаживать связи с собратьями. Если отросток одного нейрона проходит сквозь ветви другого, он почти наверняка столкнется с какой-то из них. Секвойя «хочет», чтобы на нее упал свет, а нейрон «хочет», чтобы его касались другие нейроны.
* * *
Всякий раз, когда мы пожимаем кому-то руку, ласкаем ребенка или занимаемся сексом, нам как бы напоминают, что жизнь человека зависит от физического контакта. Но почему соприкасаются нейроны? Едва увидев змею, вы тут же бежите прочь. Вы реагируете на это зрелище, потому что ваши глаза способны передать послание вашим ногам: «Двигайтесь!». Сообщение передают нейроны, но каким образом?
Нейриты упакованы куда плотнее, чем ветви в обычном лесу или даже в тропических джунглях. Лучше представить себе тарелку со спагетти – или микроскопически-тонкими капеллини[7 - Капеллини – разновидность тонких спагетти диаметром 0,85– 0,92 мм.]. Нейриты переплетаются, словно перепутанные макаронные волокна у вас на тарелке. Такое переплетение позволяет каждому нейрону касаться множества других. В точке соприкосновения двух нейронов может возникать так называемый синапс – узел, через который общаются нейроны.
Но сам по себе контакт еще не порождает синапс, который, как правило, передает какие-то химические послания. Нейрон-отправитель выделяет (секретирует) молекулу нейротрансмиттера, которую распознает нейрон-получатель. Секреция и распознавание выполняются разными типами молекул. Наличие подобной молекулярной аппаратуры свидетельствует о том, что точка контакта действительно является синапсом, а не просто местом, где один нейрит прошел мимо другого.
Эти многозначительные явления видны в обычный микроскоп, в котором для получения изображений используется свет, однако их можно увидеть лишь расплывчато. Впрочем, они великолепно обнаруживаются с помощью более совершенных микроскопов, где вместо света применяются электроны. На рис. 14 показан увеличенный в 100 тысяч раз фрагмент мозговой ткани в разрезе. Перед нами два больших круглых сечения нейритов (обозначенных как ax и sp). Подобную картинку можно получить, разрезав спагетти. Стрелка указывает на синапс между нейритами, которые разделены узкой щелью. Здесь видно, что термин «точка контакта» не совсем точен: отростки подходят друг к другу чрезвычайно близко, но всё же не соприкасаются.
Рис. 14. Синапс конечного мозга
По другую сторону щели располагается молекулярная аппаратура для отправки и приема сигналов. Одну сторону щели усеивает множество крошечных мешочков, именуемых везикулами: на снимке они показаны в виде кружков. В везикулах хранятся молекулы нейротрансмиттера, готовые к использованию. На другой стороне имеется мембрана с темным пухом, именуемым постсинаптическим уплотнением (ПСУ). Тут находятся молекулы-рецепторы.
Каким образом вся эта механика передает химическое послание? Отправитель сбрасывает в межнейронную щель содержимое одной или нескольких везикул. Молекулы нейротрансмиттера распространяются по солевому раствору, который в этой щели содержится. Их присутствие «ощущает» получатель – когда они встречаются с его молекулами-рецепторами, находящимися в ПСУ.
Рис. 15. Шариковые модели нейротрансмиттеров: глутамат (слева), ГАМК (справа)
В качестве нейротрансмиттеров используются многие типы молекул. Каждая, как это принято у молекул, состоит из атомов, связанных друг с другом. (Примеры см. на рис. 15; в этих моделях из шариков и палочек каждый шарик представляет атом, а каждая палочка – химическую связь.) Можно увидеть, что молекулы-нейротрансмиттеры каждого типа обладают своей характерной формой, которая обусловлена определенным расположением атомов.
Этот факт скоро нам пригодится.
Слева – глутамат, наиболее распространенная молекула-нейротрансмиттер. Больше всего среднему человеку известен глутамат натрия, использующийся как усилитель вкуса в китайской и других азиатских кухнях. Мало кто знает, что глутамат играет также важнейшую роль в функционировании мозга. Справа – гамма-аминомасляная кислота (ГАМК), она занимает среди нейротрансмиттеров второе место по распространенности.
Пока открыто свыше сотни различных нейротрансмиттеров. С виду этот список кажется длинным. Вы когда-нибудь испытывали растерянность в винном магазине, где полки забиты несметным количеством сортов пива и марок вина? Если вы человек привычки, то, возможно, всякий раз покупаете одну-две марки и подаете их друзьям на каждой вечеринке, которую устраиваете. Сходным образом поступают и нейроны. За небольшими исключениями, конкретный нейрон испускает во все свои синапсы лишь небольшой набор нейротрансмиттеров, а часто вообще один-единственный. (Мы говорим сейчас о синапсах, которыми нейрон налаживает связи с другими, а не о тех, с помощью которых другие налаживают связь с ним.)
Обратимся теперь к молекулам-рецепторам. Они гораздо крупнее и сложнее, чем нейротрансмиттеры. Часть каждой такой молекулы торчит над поверхностью нейрона, словно голова и руки ребенка, плавающего по воде на надувном круге. Эта выступающая часть рецептора как раз и улавливает присутствие нейротрансмиттера.
Глутаматовый рецептор чувствует глутамат, но игнорирует ГАМК и другие нейротрансмиттеры. Точно так же и ГАМК-рецептор ощущает лишь гамма-аминомасляную кислоту, а на молекулы других нейротрансмиттеров не обращает внимания. В чем причина такой избирательности? Сравним рецептор с замком, а нейротрансмиттер – с ключом. Как мы уже видели, молекула нейротрансмиттеров каждого типа имеет определенную форму, словно узор из выступов и бороздок на ключе. У каждого типа рецепторов имеется так называемая зона связи, обладающая характерной формой, словно внутренние углубления и выступы в замочной скважине. Если форма нейротрансмиттера соответствует форме зоны связи, рецептор активируется, подобно тому как ключ, подходящий к замку, отпирает дверь.
А если вы уже знаете, что мозг использует электрические сигналы, то можно не удивляться, что наркотические вещества способны менять сознание человека. Наркотик тоже состоит из молекул, и можно сделать так, чтобы эти молекулы напоминали по форме нейротрансмиттеры. Если мимикрия достаточно удачна, наркотик активирует рецепторы – подобно тому, как копия ключа открывает тот же замок, что и оригинал ключа. Никотин (основное действующее вещество сигарет, которое и вызывает привыкание) активирует рецепторы, настроенные на нейротрансмиттер ацетилхолин. Другие наркотики, наоборот, деактивируют рецепторы – подобно тому, как плохой дубликат ключа может повернуться в замке не до конца и застрять в нем. Фенциклидин, именуемый среди наркоманов и наркоторговцев «ангельской пылью» (он знаменит своим галлюциногенным действием), деактивирует глутаматовые рецепторы.
На минуту отвлечемся: стоит задуматься, с чем мы обычно ассоциируем выделения. Слюна. Пот. Моча. Находясь в приличном обществе, мы сдерживаем позыв сплюнуть или отхаркаться. Мы запечатываем потовые железы антиперспирантами. Мы спускаем воду в унитазе, пребывая в уединенной тишине. Мы стесняемся собственных выделений, они напоминают нам о том, что мы – существа из плоти и крови. Ну да, все это принадлежит миру, весьма далекому от неземных и возвышенных сущностей – например, от наших мыслей. Однако истина поражает: оказывается, сознание зависит от неисчислимых микроскопических выделений. Мысли – секреция мозга!
Может показаться странным, что нейроны общаются между собой с помощью химических веществ, но ведь мы, люди, делаем то же самое. Ну да, мы куда больше полагаемся на язык или выражение лица. Но иногда мы подаем друг другу сигналы при помощи запахов. Хотя послание, заключающееся в аромате лосьона после бритья или духов, можно интерпретировать по-разному, всё же зачастую легко догадаться: оно означает что-нибудь вроде «я ужасно сексуален» или «подойди-ка сюда». Другим животным нет необходимости покупать запахи во флаконах. Сука в течке естественным образом выделяет вещество-сигнал, именуемое феромоном: оно распространяется по всей округе, в буквальном смысле водя за нос целые стаи кобелей.
Подобные химические послания выражают желание куда примитивней, чем сонеты Шекспира. Но, опять-таки, то же самое делают стишки-валентинки. Следует различать посланника и послание. Разве в использовании химических сигналов для коммуникации есть что-то глубинно-примитивное? Да, у такого средства есть некоторые ограничения, но мозг нашел способ обходить их.
Химические сигналы обычно распространяются сравнительно медленно. Когда женщина входит в комнату, вы, как правило, услышите стук ее каблучков и увидите ее платье еще до того, как уловите аромат ее духов. Сквозняк, веющий в вашу сторону, может донести до вас этот запах чуть быстрее, но все равно звук и изображение дойдут до вас раньше. Однако нервная система способна на мгновенную реакцию. Когда вы внезапно шарахаетесь от несущейся на вас машины, управляемой безрассудным водителем, ваши нейроны весьма быстро подают друг другу сигналы. Как им это удается проделать при помощи химических посланий?
Что ж, даже самый неуклюжий бегун способен завершить гонку в мгновение ока, если дорожка всего несколько шагов длиной. Химические сигналы, может быть, и движутся медленно, однако расстояние, которое они должны преодолеть, равно всего лишь ширине синаптической щели, а значит, чрезвычайно мало.
Кроме того, химические сигналы могут показаться слишком грубым методом коммуникации, поскольку трудно посылать их в строго определенную мишень. Все участники вечеринки, обступившие женщину, способны обонять ее духи. А ведь было бы куда романтичнее, если бы этот аромат мог ощущать лишь ее возлюбленный, правда? Увы, ни один парфюмер пока не сумел изобрести столь избирательное благовоние. Что же мешает химическим посланиям на одном синапсе распространяться подобно духам и восприниматься другими синапсами? Дело в том, что синапс «бережет» нейротрансмиттер и тут же втягивает его в себя для повторного использования или же переводит в неактивную форму, так что молекулы нейротрансмиттера практически теряют возможность свободно блуждать. Нервной системе не так-то просто свести к минимуму эти взаимные помехи (так инженеры именуют подобное нежелательное распространение сигнала), поскольку синапсы теснятся очень близко друг к другу. Миллиард синапсов на кубический миллиметр: в мозгу настоящая толпа, поплотнее, чем на Манхэттене, а ведь жители этого острова частенько жалуются, что слышат доносящиеся из соседних квартир разговоры (и многое другое).
И наконец, не так-то просто контролировать выбор времени для подачи химических сигналов. Аромат духов женщины, покинувшей вечеринку, может еще долго витать в комнате. Чтобы нейротрансмиттеры не болтались без дела, существует механизм их повторного использования или перевода в неактивную форму – сходный с тем, который применяется для гашения взаимных помех. Это позволяет межнейронным химическим посланиям передаваться в строго определенное время.
Эти свойства синаптического «общения» – высокая скорость, избирательность, точность выбора времени – не так уж характерны для других типов химической коммуникации в вашем организме. После того как вы отскочили от мчащегося на вас автомобиля, сердце у вас колотится сильнее, вы тяжело дышите, кровяное давление подскакивает. Всё это происходит из-за того, что ваша надпочечная железа выделила в кровеносную систему адреналин, и его присутствие ощутили клетки вашего сердца и легких, а также сосуды. Такие реакции – «адреналиновая лихорадка» – могут казаться мгновенными, однако на самом деле они довольно неспешны. Ведь всё это происходит уже после того, как вы отпрыгнули от машины, ибо адреналин распространяется по кровотоку медленнее, чем летают сигналы от нейрона к нейрону.
Секреция гормонов в кровь – наиболее неразборчивый тип коммуникации, его называют «универсальным вещанием». Одну и ту же телепрограмму смотрят во многих домах, один и тот же аромат духов обоняют все в комнате, а присутствие одного и того же гормона ощущают многие клетки многих органов. Напротив, коммуникация в синапсе ограничена лишь двумя нейронами, которые в нее вовлечены, подобно тому как телефонный звонок соединяет лишь двух абонентов. Такое общение «из точки в точку» куда избирательнее универсального вещания.
Кроме химических сигналов, которые передаются между нейронами, в мозгу возникают еще и электрические сигналы. Они распространяются внутри нейронов. Нейриты содержат в основном солевые растворы, они не сделаны из металла, однако по форме и функциям напоминают телекоммуникационные провода, опутывающие нашу планету. Электрические сигналы могут распространяться по нейритам на весьма большие расстояния – точно так же, как подобные же сигналы идут по проводам. (Любоп ытно отметить: математические уравнения, которые лорд Кельвин в XIX веке вывел для описания процесса распространения электросигналов по подводному телеграфному кабелю, применялись и для моделирования процессов, происходящих в нейритах.)
В 1976 году легендарный инженер Сеймур Крей представил публике один из самых знаменитых суперкомпьютеров в истории – Cray-1 (см. рис. 16). Острословы называли это устройство «самым дорогим в мире диванчиком на двоих». И в самом деле, его элегантные очертания украсили бы гостиную любого плейбоя тех лет. Впрочем, во внутренностях Cray-1 не было ничего элегантного: они содержали примерно 107 км переплетенных проводов длиной от 0,3 м до 1,2 м каждый. Случайному наблюдателю они могли показаться хаотической мешаниной, на самом же деле там царил строгий порядок. Каждый провод передавал информацию между определенными двумя точками, которые Крей и его команда инженеров выбирала из определенных мест на тысячах интегральных микросхем, где располагались кремниевые чипы. И, что вполне типично для электронных устройств, провода облекли изоляцией, чтобы предотвратить взаимные помехи.
Рис. 16. Суперкомпьютер Cray-1 снаружи (слева) и внутри (справа)
Cray-1 может показаться вам сложной машиной, однако он устроен до смешного просто по сравнению с вашим собственным мозгом. Вообразите себе миллионы миль тончайших нейритов, упакованных в вашей черепной коробке, и все они, в отличие от обычных проводов, еще и разветвлены. Путаница проводов в вашем мозгу куда серьезнее, чем в компьютере Cray-1. Однако электрические сигналы в различных нейритах (даже в соседних) практически не мешают друг другу, как и сигналы в изолированных проводах. Передача сигналов между отростками нейронов осуществляется лишь в определенных точках. Эти перекрестки как раз и именуются синапсами. Точно так же сигналы в Cray-1 передаются от одного провода к другому лишь в тех местах, где изоляция намеренно снята и оголенные металлические провода приходят в непосредственное соприкосновение.
Пока я говорил о нейритах в общем, однако у многих нейронов есть по два типа отростков – дендриты и аксон. Дендриты толще и короче. Их несколько, они «вырастают» из тела клетки и ветвятся поблизости от него. Аксон – одиночный отросток, длинный и тонкий, он забирается далеко от тела клетки, а достигнув цели, разветвляется.
Дендриты и аксоны не только выглядят по-разному, но еще и играют различную роль в передаче химических сигналов. Дендриты – «принимающая сторона» синапсов. В мембранах дендритов содержатся молекулы-рецепторы. Аксоны посылают сигналы другим нейронам, выделяя нейротрансмиттеры в синапсы. Иными словами, типичный синапс – это связь между аксоном, который передает сигнал, и дендритом, который его принимает.
Электрические сигналы дендритов и аксонов также различаются. В аксонах электрические сигналы – краткие импульсы (так называемые потенциалы действия), каждый из них длится около миллисекунды (рис. 17). Потенциалы действия специалисты прозвали «пиками» из-за их заостренной формы на соответствующем графике[8 - В отечественной специальной литературе часто пишут не «пик», а «спайк» – прямое заимствование из английского. Распространен также термин «нервный импульс».]. Нейробиологи часто говорят: «Нейрон дал пик», подобно тому как финансовый журналист сообщает: «Рынок акций дал пик по банковским прибылям». Когда нейрон дает пик, импульс, этот нейрон именуется «активным».
Пики эти заставляют вспомнить об азбуке Морзе, вам она, возможно, знакома по старому кино: это последовательность длинных и коротких сигналов, создаваемая телеграфистом, который нажимает на ключ. В первых системах телекоммуникации только подобные сигналы удавалось расслышать сквозь статические помехи. Чем больше расстояние, на которое передается любой сигнал, тем сильнее он искажается помехами. Вот почему азбука Морзе до сих пор используется для сверхдальней связи – даже спустя много десятилетий после того, как для местных звонков стал вовсю применяться телефон. Природа «изобрела» потенциалы действия практически с той же целью: чтобы передавать информацию в мозгу на относительно большие расстояния. Поэтому нервные импульсы возникают главным образом в аксоне – самом длинном типе нейритов. В сравнительно небольшой нервной системе, как у C. elegans или у мухи, нейриты короче, и многие нейроны не дают пиков.
Рис. 17. Нервные импульсы (потенциалы действия, «спайки»)
Как же связаны эти два типа нейрокоммуникации – химическая и электрическая? Если говорить упрощенно, синапс активируется, когда проходящий через него нервный импульс вызывает секрецию. По другую сторону синапса рецепторы чувствуют присутствие нейротрансмиттера и «включают электрический ток». Выражаясь более абстрактно, синапс превращает электрический импульс в химический сигнал, а затем – снова в электрический импульс.
Такое превращение одного типа сигналов в другой широко применяется в технологиях, которые мы используем в быту. Представьте себе двух людей, разговаривающих по традиционному стационарному телефону. Электрический сигнал движется между ними по длинному непрерывному проводу. (Давайте на время забудем о том, что современные телефонные сети задействуют еще и световые сигналы, путешествующие по оптоволоконным кабелям.) Но электрические сигналы сами по себе не пересекают узкую воздушную прослойку между телефонной трубкой и ухом абонента: они трансформируются в акустические сигналы. После тысячемильного пути электрический сигнал обращается в звуковой и уже в таком виде попадает в ухо слушателя. Похожие вещи происходят и в мозгу: электрический сигнал может проходить внутри мозга относительно большое расстояние по аксону, однако не достигает нужного нейрона сразу, а превращается сначала в химический сигнал, который пересекает синаптическую щель и добирается до нейрона-адресата.
* * *
Если один нейрон способен сигнализировать другому через синапс, то этот другой может подать знак третьему – и так далее. Последовательность таких нейронов именуется нейронным (нервным) путем. Вот так нейроны и общаются друг с другом, даже если они не соединены напрямую посредством синапса.
Но тут есть отличие от, скажем, тех троп, по которым мы карабкаемся во время походов в горы. По нейронным путям можно двигаться лишь в одном направлении. Причина в том, что синапс – устройство одностороннее. Когда между двумя нейронами существует синапс, можно сказать, что они связаны друг с другом, как два приятеля, болтающих по телефону. Но эта метафора хромает, поскольку телефон-то передает информацию в обе стороны, а в каждом синапсе послания идут лишь в одну сторону. Один нейрон всегда выступает здесь отправителем, другой – получателем. И это не из-за того, что один нейрон «болтлив», а другой «молчалив». Это связано со структурой синапса. «Аппаратура» для выработки нейротрансмиттера находится с одной его стороны, а для восприятия нейротрансмиттера – с другой.
В принципе нейриты – устройства двусторонние, и электрический сигнал может путешествовать по ним в любом направлении. На практике нервный импульс обычно движется по аксону от тела клетки, а электрические сигналы, распространяющиеся по дендритам, идут к телу клетки. Такое распределение направлений диктуют нейритам синапсы. В вашей кровеносной системе кровь течет по венам, направляясь к сердцу. Если бы вена была просто трубочкой, кровь могла бы течь и в противоположном направлении. Но вена содержит клапаны, которые этому препятствуют. Клапаны заставляют кровь двигаться по венам в определенном направлении, подобно тому как синапсы определяют направление движения сигнала в нейронных путях.
Рис. 18. Мультинейронный путь в нервной системе
Таким образом, нейронный путь в нервной системе – это, по сути, движение через синапсы от нейрона к нейрону, с учетом направления, задаваемого каждым синапсом (рис. 18). В пределах одного нейрона электрические сигналы идут от дендритов к телу клетки, а от него – к аксону. Химические сигналы передаются от аксона этого нейрона к дендриту другого нейрона, внутри которого электрические сигналы снова идут от дендритов к телу клетки, а оттуда – к аксону. Они снова превращаются в химические сигналы, которые передаются еще одному нейрону. Далее повторяется тот же процесс. Синаптическая щель чрезвычайно узка, поэтому почти весь нейронный путь сигналы проходят внутри нейронов, а не между ними. Более того, основная часть этой дистанции приходится на аксоны, которые гораздо длиннее дендритов.
Поедая вареную курочку, вы наверняка замечали на своей тарелке целые пучки аксонов. Обычно их в таком случае называют нервами, это мягкие беловатые нити. Их не следует путать со связками, которые жестче, или с кровеносными сосудами, которые темнее. Если рассечь нерв сырой птицы очень острым кухонным ножом, эта нить расщепится, подобно канату, на множество волокон. Это «волокна» нерва – его аксоны.
Нервы, «укорененные» в поверхности головного или спинного мозга, все вместе образуют центральную нервную систему (ЦНС). Но большинство нервов протянуты в сторону поверхности тела, где они и разветвляются. В совокупности они называются периферической нервной системой (ПНС). Аксоны нервов принадлежат телам клеток ЦНС или же небольшим форпостам нейронов – периферическим ганглиям. Вместе ЦНС и ПНС образуют нервную систему, которую еще можно определить как совокупность всех нейронов организма и клеток, которые поддерживают их существование. Указание на нервы в термине «нервная система» может ввести в заблуждение, поскольку основные части этой системы – не нервы, а головной и спинной мозг.
А теперь вернемся к вопросу, который мы поставили раньше: каким образом вид змеи заставляет нас бежать от нее? Упрощенный ответ таков: глаза подают сигнал головному мозгу, тот – спинному, а уже спинной мозг – ногам. Первую стадию реакции обеспечивает зрительный нерв, пучок из миллиона аксонов, идущий от глаза к мозгу. Вторая стадия осуществляется посредством пирамидного тракта – пучка аксонов, который идет от головного мозга к спинному. (Пучок аксонов ЦНС называют трактом, а не нервом.) В третьей стадии участвуют седалищный и другие нервы, они соединяют спинной мозг с мышцами ног.
Рассмотрим нейроны в начале и в конце нейронных путей, обеспечиваемых этими аксонами. В задней части нашего глаза имеется тонкий слой нервной ткани – сетчатка. Зрелище змеи – световой сигнал. Он попадает на особые нейроны сетчатки – фоторецепторы. В ответ они выделяют химические «послания», а те, в свою очередь, воспринимаются другими нейронами. Вообще говоря, каждый из наших органов чувств содержит нейроны, которые активируются физическими раздражителями того или иного типа. Нейроны органов чувств (сенсорные нейроны) и стоят у истоков движения по нейронным путям – от раздражения до отклика на него.
Эти нервные пути заканчиваются, когда аксоны нервов создают синапсы с волокнами мышц, синапсы выделяют нейротрансмиттер, а волокна в ответ сокращаются. Согласованное сжатие множества мышечных волокон заставляет саму мышцу сокращаться, тем самым совершая движение. Каждая из наших мышц управляется аксонами двигательных нейронов. Английский ученый Чарлз Шеррингтон, который получил в 1932 году Нобелевскую премию по физиологии и медицине и ввел в научный обиход термин «синапс», подчеркивал, что мышцы – конечный пункт назначения для всех нейронных путей: «Человек способен лишь перемещать предметы… и единственный исполнитель этого действия – мышца, независимо от того, что вы делаете – шепчете одно короткое слово или валите целый лес».
Между нейронами органов чувств (сенсорными нейронами) и двигательными (моторными) нейронами проходит множество нейронных путей, некоторые из них мы подробно рассмотрим в дальнейших главах. Вполне понятно, что такие пути существуют: не будь их, мы не смогли бы реагировать на раздражители. Но каким именно образом сигналы идут по этим путям?
Когда в 1850 году Калифорния вошла в состав Соединенных Штатов, связь с восточными штатами занимала целые недели. В 1860 году возникла служба Pony Express, призванная ускорить доставку почтовых отправлений. На маршруте от Калифорнии до Миссури, протянувшемся на две тысячи миль, находилось 190 станций. Мешок с почтой ехал днем и ночью, на каждой станции меняли лошадей, а каждые шесть или семь станций – всадника. Достигнув Миссури, послания отправлялись по телеграфу дальше на восток. Так общее время передачи послания с Тихоокеанского побережья на Атлантическое удалось сократить с двадцати трех до десяти дней. Pony Express работала всего год и четыре месяца: вскоре ее полностью вытеснил первый трансконтинентальный телеграф, на смену которому затем пришел телефон и компьютерные сети. Технология изменилась, но главный принцип связи – нет. Коммуникационная сеть остается средством доставки сообщений от одной станции до другой через специальные пути.
Соблазнительно представить себе нервную систему как такую вот коммуникационную сеть, которая передает импульсы от нейрона к нейрону. Нейронный путь можно тогда сравнить с домино: каждый нервный импульс порождает следующий, подобно тому как одна за другой падают костяшки домино, выстроенные цепочкой. Это объяснило бы, почему ваши глаза приказывают вашим ногам двигаться, когда вы видите змею. На самом деле всё сложнее. Да, аксон действительно передает импульс от тела клетки к синапсам. Однако, как выясняется, синапс не просто передает нервные импульсы следующему нейрону.
Почти все синапсы слабы. Секреция нейротрансмиттера вызывает лишь крошечный электрический эффект в следующем нейроне, и этого вовсе недостаточно, чтобы породить пик. Представьте себе цепочку из костяшек домино, расставленных слишком далеко друг от друга. Падение одной не окажет никакого действия на соседнюю. Точно так же и отдельный нервный путь обычно не способен сам по себе передать импульс. Но, как я объясню ниже, это даже хорошо.
* * *
Развилка дорог в осеннем лесу –
Жаль, по двум сразу идти нельзя,
Я был один, а дорог было две.
Так писал Роберт Фрост в своей знаменитой «Другой дороге». Нервный импульс не задумывается над фростовской дилеммой, когда добирается до развилки на аксоне. Импульс – это вам не одинокий путник, импульс преспокойно удваивает себя, и по двум ветвям аксона идут уже два нервных импульса. Дальше процесс повторяется, и одиночный пик, рожденный возле тела клетки, становится множеством пиков, которые достигают каждой ветви аксона, не снижая своей амплитуды. И все синапсы, созданные аксоном с другими нейронами, побуждаются к выработке нейротрансмиттера.
Благодаря этим предприимчивым синапсам нейронные пути разветвляются, словно дорога в стихотворении. Вот почему раздражение одного органа чувств может приводить к различной реакции. При виде змеи вам хочется убежать, потому что нейронные пути, связывающие ваши глаза с ногами, реагируют на это зрелище определенным образом. Однако созерцание аппетитного бифштекса заставляет ваш рот увлажниться. Это происходит благодаря нейронным путям, которые идут от ваших глаз к слюнным железам. Эти два типа путей идут от глаз, и неудивительно, что убегание или слюноотделение происходят после того, как вы что-то увидели. Загадка в другом. Почему отклик лишь один? Если сигналы идут по всем возможным путям, любое раздражение могло бы активизировать каждую мышцу и железу. А ведь такого, как мы знаем, не происходит.
Причина в том, что сигналы не проходят по нейронным путям с такой уж легкостью. Мы уже видели, что одиночные синапсы и отдельные нейронные пути не передают нервные импульсы. Как же вообще сигналам удается пройти по этой системе? Хотя ветви дендритов кажутся похожими на ветви аксонов, функция у них совершенно разная. Аксоны разветвляются, а дендриты – наоборот, сходятся вместе. Там, где соединяются две ветви, могут встретиться и два потока электричества, текущих в сторону тела клетки. Они могут слиться воедино (конвергировать), как вода двух рек. Подобно тому как озеро собирает воду многих ручьев, тело клетки собирает с помощью своих дендритов электрические токи от многих синапсов.
Почему это слияние играет такую важную роль? Одиночный синапс обычно слишком слаб, чтобы заставить нейрон дать пик, но эту работу может проделать множество синапсов, действующих сообща. Если они активируются одновременно, то могут вместе «убедить» нейрон дать импульс. Пик либо появляется, либо нет (это пороговое явление), поэтому результат можно считать «решением нейрона». Под этим образом я, конечно, не подразумеваю, что нейрон обладает собственным сознанием или умеет мыслить так же, как это делают люди. Я просто имею в виду, что у нейрона не бывает неопределенности в принятии решения. Не существует такой штуки, как «половинка нервного импульса».
Принимая решение, мы иногда обращаемся за советом к друзьям и близким. Точно так же и нейрон «прислушивается» к другим нейронам благодаря конвергирующим синапсам. Тело клетки суммирует электрические токи – по сути, определяя результат голосования «советчиков». Если результат превышает некоторое пороговое значение, аксон дает пик. Значение этого порога определяет, будет нейрон принимать решение с легкостью или же с неохотой – подобно тому, как в политических системах для принятия того или иного решения требуется простое большинство голосов, или две трети голосов «за», или единогласное одобрение.
У многих нейронов электрические сигналы дендритов затухают постепенно в отличие от пиков аксона с их принципом «всё или ничего». Это весьма удобно для представления всего спектра результатов «голосования». Пик в дендритах может оказаться преждевременным (сравним это с объявлением итогов выборов еще до того, как поданы все голоса). Лишь после того, как тело клетки «подсчитает все голоса», в аксоне возникают нервные импульсы. Если в дендритах не хватит пиков, они не смогут передать информацию на большое расстояние. Вот почему дендриты гораздо короче аксонов.
Один из основополагающих принципов демократии звучит так: «Один человек – один голос». Все голоса равноценны, как в нейронной модели, которую мы описали выше. Но мы можем оказаться менее демократичны, учитывая советы друзей и близких, серьезнее относясь при этом к мнениям одних, чем к позиции других. Точно так же и нейрон обычно относится к своим «советчикам» неодинаково. Электрический ток может иметь разную силу. Сильные синапсы порождают сильный ток в дендритах, а слабые синапсы – слабый. Сила синапса количественным образом выражает относительную ценность его «избирательного голоса» в решении, которое примет нейрон. Кроме того, нейрон способен принимать от синапсов другого нейрона множественные сигналы, словно позволяя тому вбрасывать не один, а много бюллетеней: еще одна разновидность фаворитизма.
Итак, мы добрались до нейронной модели «неравноценного голосования». Но на любых выборах существует требование какой-никакой одновременности. Так, каждого избирателя просят явиться на избирательный участок в заранее оговоренный день. Поскольку синапсы могут голосовать когда угодно, в мозгу всегда день выборов. (Метафора немного ошибочна: синаптические голоса подсчитываются за период времени значительно короче одного дня и даже одного часа: этот «подсчет» занимает от нескольких миллисекунд до нескольких секунд.) Голоса двух синапсов учитываются на одних и тех же выборах, только если электрические сигналы от этих синапсов достаточно близки друг к другу по времени, чтобы перекрываться.
Синаптические токи можно сравнить с оскорблениями, которыми кого-то осыпают. Единичное оскорбление не способно спровоцировать приступ гнева (читай – породить нервный импульс), так что если ругательства произносятся не очень часто, обругиваемый не разозлится. Но если множество оскорблений звучит одновременно или же следуют друг за другом быстрой чередой, может возникнуть эффект накопления, и в конце концов «последняя капля» переполнит чашу терпения бедняги.
* * *
Объясняя процесс нейронного голосования, я ради простоты опустил важное свойство синапсов. Как выясняется, нейроны учитывают не только голоса «за». Другой тип синапсов регистрирует и голоса «против». Это различие между «да» и «нет» происходит из-за того, что активация синапса заставляет течь электрический ток, но при этом он может течь в двух различных направлениях. Возбуждающие (моторные) синапсы говорят «да», потому что они вырабатывают электрический ток, текущий в сторону принимающего нейрона, что может возбудить его, заставив породить нервный импульс. Ингибирующие (тормозящие) синапсы говорят «нет», поскольку они заставляют ток течь от нейрона, что ингибирует возникновение пика (то есть препятствует его возникновению).
Ингибирование играет ключевую роль в функционировании нервной системы. Разумное поведение не сводится к адекватным откликам на раздражители. Иногда важнее чего-то не сделать – не тянуться к этому вот пончику, когда вы на диете, или не пить еще один бокал вина на корпоративной вечеринке. Не совсем понятно, как эти примеры психологического ингибирования связаны с ингибирующими синапсами, однако можно по крайней мере поверить, что какая-то связь тут все-таки есть.
Необходимость ингибирования могла бы считаться главной причиной, по которой мозг так сильно зависит от синапсов, передающих химические сигналы. На самом деле существует еще один тип синапсов, напрямую передающий электрические сигналы без использования нейротрансмиттеров. Подобные электрические синапсы действуют быстрее, поскольку из процесса исключены занимающие сравнительно много времени стадии конвертации сигналов из электрической формы в химическую и затем обратно в электрическую. Однако среди электрических синапсов нет ингибирующих, есть лишь возбуждающие. Возможно, именно поэтому (и вследствие ряда других ограничений) электрические синапсы встречаются гораздо реже, чем химические.
Как же нам пересмотреть «голосовательную» модель с учетом ингибирования? Выше я упоминал о том, что нейрон дает пик, когда число голосов «за» превышает определенное пороговое значение. Если учесть ингибирование, получится, что пик возникает, когда количество голосов «за» превышает число голосов «против» на какую-то величину, определяемую пороговым значением. Как и их возбуждающие собратья, синапсы-ингибиторы могут быть сильнее или слабее, так что голосование здесь тоже не вполне демократичное: каждый голос имеет свой вес. Некоторые ингибирующие синапсы настолько сильны, что могут наложить вето на результат голосования множества возбуждающих синапсов.
И еще кое-что о нейронном голосовании. Нейроны ведут себя как конформисты или вечные оппозиционеры – их тоже можно разделить на возбуждающие и ингибирующие. Возбуждающий нейрон предлагает другим нейронам только возбуждающие синапсы, тогда как ингибирующий нейрон – лишь ингибирующие. Такое единообразие не сохраняется, если речь идет о синапсах, которые нейрон принимает: здесь может наблюдаться смесь возбуждающих и ингибирующих синапсов.
Иными словами, возбуждающий нейрон либо говорит «да» всем нейронам, давая пик, либо воздерживается от голосования, «храня молчание». Аналогичным образом ведет себя ингибирующий нейрон: он или голосует против, или воздерживается. Нейрон не может каким-то своим собратьям ответить «да», а каким-то – «нет», или же изменить свое решение.
Если возбуждающий нейрон слышит много голосов «за», он также отвечает «да», соглашаясь с большинством. Если ингибирующий нейрон слышит много голосов «за», он говорит «нет», в противовес преобладающему мнению. Во многих частях мозга, в том числе и в его коре, большинство нейронов – возбуждающие. Мозг можно сравнить с нашим обществом, где изобилуют конформисты, но есть и бунтари.
Действие некоторых седативных препаратов как раз и основано на усилении ингибирования: они дают больше власти ингибирующим нейронам, чтобы те подавляли активность других нейронов. Средства же, которые ослабляют ингибирование, дают больше власти возбуждающим нейронам, которые в результате способны выйти из-под контроля и даже спровоцировать эпилептический припадок. Возбуждающие нейроны можно сравнить с провокаторами, подбивающими толпу на бунт. А ингибирующие нейроны – с полицейскими, которых вызвали для того, чтобы сбить возбуждение собравшихся.
Нейробиологи исследуют и многие другие свойства синапсов. Но я надеюсь, что читателю ясно: когда мы говорим, что два нейрона «связаны», это лишь самое начало описания их взаимодействия. Связь эта может осуществляться посредством одного-единственного синапса или большего количества синапсов – химических, или электрических, или тех и других. Химический синапс характеризуется определенным направлением, в котором передается сигнал, и может являться возбуждающим или ингибирующим, сильным или слабым. Электрические токи, которые он порождает, могут быть продолжительными или краткими. Все эти факторы играют роль, когда синапсы заставляют нейроны давать пики.
* * *
Я уже отмечал, что нейронные пути идут от глаза и к ногам, и к слюнным железам. Чтобы объяснить, почему тот или иной раздражитель активирует одни пути, но не другие, я обратил особое внимание на синаптическую конвергенцию, которая играет важнейшую роль для описания процесса пикообразования в «голосовательной» модели нейронов. Если нейрон не дает пик, этот нейрон является своего рода тупиком для всех нейронных путей, которые к нему сходятся. Мириады подобных тупиков, возникающих из-за существования непикообразующих нейронов, чрезвычайно важны для функционирования мозга. В частности, они позволяют нам не захлебнуться слюной при виде змеи и не убежать при виде бифштекса.
Отказ от пикообразования столь же важен для правильного функционирования нейронов, как и само пикообразование. Вот почему одиночные синапсы и отдельные нервные пути не способны передавать импульсные пики. В рамках голосовательной модели существует два механизма, объясняющих, почему нейроны так разборчивы в своих решениях, давать ли пик и когда это делать. Я уже упоминал о том, что аксон дает нервный импульс лишь тогда, когда общий электрический ток, накопленный телом клетки, превышает некоторое пороговое значение. Подъем этого порога для аксона – способ сделать нейрон еще привередливее. Если нейрон получает голос «против» от любого ингибирующего синапса, это еще больше усиливает его избирательность, и теперь для образования пика требуется еще больше голосов «за». Иными словами, есть два механизма, предотвращающие неразборчивое образование пиков: собственно порог пикообразования и синаптическое ингибирование.
Нервные импульсы наделены двумя функциями. Возникновение пика возле тела клетки знаменует собой принятие решения. Распространение импульса по аксону сообщает другим нейронам о результате этого решения. У коммуникации и принятия решений разные цели. Цель коммуникации – сохранять информацию, передавая ее без изменений и искажений. Но в процессе принятия решений важно умение отвергать ненужную информацию. Представьте, что ваша подруга примеряет в бутике пальто и всё никак не решится купить его. На ее решение влияет множество факторов: то, насколько пальто ей подходит по размеру, цвет изделия, производитель, атмосфера в магазине и тому подобное. Вы можете долго внимать сомнениям подруги, но в конце концов потеряете терпение и воскликните: «Так ты будешь покупать эту штуку или нет?» В конечном счете играет роль итоговое решение, а не его многочисленные причины.
Похожая история и с распространением нервного импульса. Сам по себе он показывает, что нейронное голосование перевалило через нужный порог, но не сообщает подробностей о мнениях отдельных «советчиков». Иными словами, нейроны способны передавать какую-то информацию, однако при этом отбрасывают значительную ее часть. (Это напоминает мне моего отца, который обожает гордо заявлять: «Знаешь, почему я такой умный? Потому что я отлично умею забывать то, что нужно забыть».) Вот почему мозг устроен куда сложнее, чем телекоммуникационная сеть. Следовало бы сказать, что нейроны вычисляют, а не просто общаются. Мы привыкли ассоциировать вычисления со своим компьютером, ноутбуком и планшетом, но все они – лишь один из типов вычислительных приборов. Мозг относится к совсем другому типу подобных устройств.
Следует проявлять известную осторожность, сравнивая мозг с компьютером. Однако они сходны по меньшей мере в одном важном отношении. Оба «умнее» тех элементов, из которых состоят. В соответствии с моделью «неравноценного голосования» нейроны выполняют простые операции, которые сами по себе не требуют разума и которые может осуществить самое простое устройство.
Как мозгу удается быть столь сложно устроенным, ведь нейроны, казалось бы, так просты? Ну, на самом-то деле нейрон не так прост. Реальные нейроны все-таки несколько отличаются от тех, что описаны в голосовательной модели. Тем не менее одиночный нейрон не дотягивает до объекта, наделенного разумом или сознанием. Однако к таким объектам можно, по большому счету, отнести нейронные сети.
Столетия назад такую идею, возможно, трудно было бы принять. Но в наши дни мы уже привыкли к мысли, что набор глупых компонентов может оказаться очень умным. Никакая из деталей компьютера не способна играть в шахматы, зато огромное количество таких деталей, организованных должным образом, сообща может разгромить чемпиона мира. Организованное функционирование миллиардов глупых нейронов – вот что делает человека умным. И тут мы подходим к самому глубокому вопросу нейробиологии. Как организация нейронов в вашем мозгу позволяет вам воспринимать мир, думать, выполнять другие умственные задачи? Ответ кроется в коннектоме.
Глава 4
Кругом одни нейроны
Нервные импульсы да выработка нейротрансмиттеров – вот и всё. Что же, наше сознание выражается лишь этими физическими процессами, которые идут у нас в черепной коробке? Нейробиологи не сомневаются, что так и есть. Но большинство людей, с которыми я встречался, как-то сопротивляется этой идее. Даже ярые поклонники нейронауки, в начале встречи бомбардирующие меня вопросами касательно мозга, позже зачастую выражают убежденность, что сознание все-таки в конечном счете зависит от какой-то нематериальной сущности вроде души.
Мне, признаться, неизвестны никакие объективные научные доказательства существования души. Почему люди в нее верят? Вряд ли единственная причина тут – собственно религия. Каждый человек, вне зависимости от того, верующий он или нет, чувствует, что он – единичная, одинокая и цельная сущность, которая воспринимает, принимает решения и действует. Утверждение «Я увидел змею, и я убежал» предполагает наличие этой цельной сущности. Ваше (и мое) субъективное ощущение таково: «Я один». Напротив, нейронаука заявляет, что единство сознания – лишь иллюзия, под которой кроются нервные импульсы и секреции колоссального числа нейронов. Эту концепцию личности можно выразить так: «Меня много».
Какова же все-таки реальность? Множество нейронов или одна душа?
В 1695 году немецкий философ и математик Готфрид Лейбниц выступал в защиту второго утверждения:
Более того, посредством души или формы являет себя единая сущность, находящаяся в согласии с тем, что называется в нас Я; такое не может происходить в созданных человеком механизмах или же в простой массе материи, сколь бы организованна она ни была.
В последние годы жизни он пошел еще дальше и предположил, что машины и механизмы изначально не способны к восприятию:
Следует признать, что восприятие и то, что от него зависит, необъяснимо с помощью математических принципов, то есть через цифры, фигуры и движения. Воображая себе машину, чья конструкция позволит ей мыслить, чувствовать и обладать восприятием, невольно представляешь себе гигантское сооружение наподобие ветряной мельницы, куда можно входить не нагибаясь. Но, войдя, вы обнаружите внутри лишь части, толкающие друг друга, и ничто не объяснит вам, каким образом осуществляется здесь восприятие.
Лейбниц мог лишь воображать себе наблюдение деталей машины, которая умеет воспринимать и мыслить. К тому же он выстроил это умозрительное рассуждение лишь для подкрепления тезиса, что такая машина не может существовать. Но его фантазия давно сбылась в самом буквальном смысле – если рассматривать мозг как машину, сделанную из деталей-нейронов. Нейробиологи часто измеряют нервные импульсы в живом, действующем мозгу. (Технология количественной оценки секреции нейротрансмиттеров менее развита.)
Большинство таких измерений выполняется на подопытных животных, но иногда и на людях. Нейрохирург Ицхак Фрид оперирует страдающих острыми формами эпилепсии. Как и Пенфилд, перед операцией он с помощью электродов строит карту мозга, что позволяет ему делать и научные наблюдения (всегда с согласия пациента). В ходе совместного эксперимента с нейробиологом Кристофом Кохом и другими специалистами Фрид показывал нескольким пациентам подборку фотоснимков и записывал уровень нейронной активности срединной части лобной доли мозга – СЧЛД. («Срединная» здесь означает «близкая к плоскости, разделяющей левое и правое полушария».) Таким путем изучили многие нейроны, но особенно прославился один. Фрид случайно обнаружил нейрон, который выдавал множество импульсов, когда пациент рассматривал фотографии актрисы Дженнифер Энистон. Однако этот нейрон жил довольно спокойно (не порождая импульсы или порождая лишь небольшое их количество), когда пациент смотрел на снимки иных знаменитостей, обычных людей, достопримечательностей, животных и т. п. Даже фото Джулии Робертс, другой очаровательной кинозвезды, не вызывало никакого отклика.
Журналисты так и уцепились за этот сюжет. Посыпались шуточки: мол, ученые наконец-то обнаружили, какие нейроны в нашем мозгу накапливают ненужную информацию. Мол, «у Анджелины Джоли, может, и есть Брэд Питт, зато лишь у Дженнифер Энистон имеется свой личный нейрон, названный в ее честь». Мол, нейрон помалкивал, когда ему предъявляли снимки Дженнифер с этим самым Брэдом Питтом. (Статья Фрида и его коллег появилась в 2005-м – в том самом году, когда звездная парочка развелась.)
Но шутки в сторону. Что прикажете думать об этом нейроне? Прежде чем делать какие-то выводы, имейте в виду, что другие нейроны в ходе этих опытов также изучались. Обнаружили «нейрон Джулии Робертс», который давал пики лишь при виде ее фотографий. Нашли «нейрон Холли Берри», «нейрон Коби Брайанта»[9 - Коби Брайант – знаменитый американский баскетболист.] и т. п. На основании этих находок можно осмелиться предложить следующую гипотезу: для любой знаменитости, какую вы знаете, в вашей СЧЛД существует нейрон этой знаменитости, порождающий нервный импульс в ответ на изображение этой звезды.
Можно совсем уж расхрабриться и предположить, что восприятие вообще именно так и работает. Способность к восприятию чересчур сложна, чтобы за нее отвечал один-единственный нейрон. Вероятно, она разбита на множество отдельных специфических функций по различению определенного лица или предмета. Каждой из таких функций ведает соответствующий нейрон. Мозг можно уподобить армии папарацци, нанятых еженедельным журналом, который регулярно публикует скандальные фото кинозвезд. Каждый фотограф приписан к определенной знаменитости. Один охотится со своей камерой на Дженнифер Энистон, другой посвящает свое время Холли Берри и т. п. Каждую неделю их деятельность определяет, какие звезды экрана появятся в очередном номере журнала – подобно тому, как испускание импульсов нейронами срединной части лобной доли определяет, изображение каких знаменитостей воспринимает зритель.
Ну как, мы посрамили Лейбница? Похоже, мы только что заглянули внутрь его «машины» и увидели процесс восприятия – сведенный к нервным импульсам. Но не будем торопиться. Хотя эксперимент Фрида многих восхищает, у его опытов есть важнейшее ограничение: изучалось сравнительно мало знаменитостей. Каждый пациент просматривал снимки в общей сложности всего десяти – двадцати звезд. Нельзя исключить вероятность того, что «нейрон Дженнифер Энистон» мог бы активироваться благодаря просмотру фотографии какой-нибудь другой известной актрисы.
Так что давайте немного пересмотрим нашу теорию. Первоначально мы предполагали взаимно-однозначное соответствие нейронов и знаменитостей: один нейрон – одна кинозвезда. Представим теперь, что один нейрон отвечает не за одну знаменитость, а за небольшую их долю. Допустим также, что каждая знаменитость активирует небольшую долю нейронов, а не один. Пикообразование в этой группе нейронов – то событие, которым мозг отмечает восприятие изображения знаменитости. (Группы, активируемые различными знаменитостями, при этом могут перекрываться – частично, но не полностью. Можно представить, как каждый фотограф из нашей армии папарацци получает задание снимать не одну, а несколько знаменитостей, и каждую знаменитость снимает целая группа фоторепортеров.)
Вы можете запротестовать: наше восприятие – чересчур сложный процесс, его нельзя сводить к простому пикообразованию. Но не забывайте, что пикообразование у совокупности нейронов – это рисунок (узор) нейронной активности, где одни нейроны дают пик, а другие – нет. Число возможных узоров колоссально – более чем достаточно, чтобы уникальным образом представить каждую знаменитость, да и вообще любой из возможных воспринимаемых объектов.
Таким образом, Лейбниц ошибался. Наблюдая части нейронной машины, мы многое узнали о восприятии, хотя нейробиологи обычно ограничены возможностью одновременно измерять лишь пики от одного нейрона. Некоторые ученые пытались одновременно измерять нервные импульсы от десятков нейронов, но даже это число – весьма скудное в сравнении с гигантским количеством нейронов в мозгу. На основании экспериментов, которые проделаны к настоящему времени, мы можем сделать предположение: если бы мы могли наблюдать деятельность всех наших нейронов, мы смогли бы расшифровать то, что мы воспринимаем или думаем. Правда, такая разновидность чтения мыслей потребовала бы знания «нейронного кода», который можно сравнить с громадным словарем. Каждая статья в нем описывает определенное восприятие и соответствующий ему рисунок нейронной активности. В принципе мы могли бы составить такой словарь, просто записывая узоры активности, возникающие под действием огромного количества раздражителей.
* * *
Физик, математик, астроном, алхимик, теолог, смотритель Монетного двора – за свою жизнь Исаак Ньютон попробовал себя во множестве профессий. Он изобрел интегральное исчисление – область математики, чрезвычайно важную для физических и инженерных расчетов. С помощью своих знаменитых трех законов движения и не менее знаменитого закона всемирного тяготения он объяснил, каким образом планеты вращаются вокруг Солнца. Он предположил, что свет состоит из частиц, и вывел математические законы оптики, которые описывают, как траектории этих частиц искажаются водой или стеклом, давая радужный спектр. Еще при жизни Ньютон был признан гением. Когда в 1727 году он умер, английский поэт Александр Поуп написал эпитафию:
Законы мирозданья смутно
Во мраке крылись много лет,
Но рек Господь: «Да будет Ньютон!» –
И воссиял над миром свет.
В 2005 году английское Королевское научное общество провело голосование, в ходе которого Исаак Ньютон был объявлен даже более великим ученым, чем Альберт Эйнштейн.
Мы выражаем свое восхищение гением-одиночкой, проводя такие сравнения и оказывая ему почести – скажем, присуждая Нобелевскую премию. Но есть и другой взгляд на науку, в нем роль индивидуального ученого подчеркивается меньше. Ньютон и сам признавал, что в интеллектуальном смысле он многим обязан коллегам: «Если я и видел дальше прочих, так это лишь оттого, что стоял на плечах гигантов».
Действительно ли Ньютон был такой уникальной личностью? Или он просто оказался в нужном месте в нужное время и сумел сложить два и два? Интегральное исчисление примерно в те же самые годы изобрел Лейбниц. История науки пестрит рассказами о таких вот почти одновременных открытиях, ведь новые идеи создаются путем правильного сочетания и осмысления идей старых. В каждый момент истории это может сделать не один ученый, а по крайней мере несколько. В этом смысле ни одна идея не является по-настоящему новой. А значит, ни один ученый не является по-настоящему уникальным. И мы не можем по-настоящему понять достижения ученого, не зная, что именно почерпнул он из теорий своих предшественников или современников.
В этом отношении нейроны подобны ученым. Если нейрон дает импульс в ответ на фотографию Дженнифер Энистон, но не реагирует на других звезд, мы можем заключить, что функция нейрона – распознавание прелестного личика Дженни. Однако этот нейрон – лишь один из многих нейронов, вместе составляющих целую сеть. Ошибкой было бы представлять его как гения-одиночку, распознающего светлый образ Дженнифер самостоятельно и безо всякой помощи. Слова Ньютона можно слегка перефразировать, и тогда они окажутся куда применимее к нейрону, чем к Ньютону: «Если нейрон видит дальше, так это потому, что он стоит на плечах других нейронов». Чтобы понять, как нейрону удается распознать лицо Дженни, не помешает сначала узнать что-нибудь о тех нейронах, от которых он получает информацию.
Теория, описывающая происходящее, основана на модели «неравноценного голосования», о которой я рассказывал выше. Представим Дженни как комбинацию более простых составляющих. У нее голубые глаза, светлые волосы, заостренный подбородок и так далее (во всяком случае, в данном тексте). Если список будет достаточно длинным, он даст уникальное описание Дженни, не подходящее ни к какой другой знаменитости. Теперь предположим, что в мозгу имеются нейроны для распознавания каждого раздражителя из нашего списка. Иными словами, существует «нейрон голубых глаз», «нейрон светлых волос» и даже «нейрон заостренного подбородка». Порог пикообразования для «нейрона Дженнифер Энистон» высок: этот нейрон дает пик, лишь когда порождают пик все нейроны, отвечающие за части этого образа, то есть когда происходит единогласное волеизъявление, а оно возможно лишь как отклик на Дженни. Короче говоря, нейрон опознаёт Дженни как комбинацию ее частей, а опознанием этих частей занимаются другие нейроны.
Объяснение выглядит правдоподобным, однако тут же возникают другие вопросы. Каким образом «нейрону голубых глаз» удается распознавать голубые глаза, а нейрону светлых волос» – светлые волосы? Вспоминается забавный случай, открывающий «Краткую историю времени» физика Стивена Хокинга:
Один известный ученый… как-то раз читал публичную лекцию по астрономии. Он описывал, как Земля вращается вокруг Солнца и как Солнце, в свою очередь, вращается вокруг центра громадного скопления звезд, именуемого нашей галактикой. В конце лекции с заднего ряда поднялась некая старушка и заявила: «Вы говорите какую-то чушь. На самом деле мир – плоская тарелка, которая стоит на спине гигантской черепахи». Ученый снисходительно улыбнулся и спросил: «А на чем же стоит черепаха?» «Вы очень умны, молодой человек, очень умны, – признала старушка. – Но там и дальше черепахи, до самого низа! Кругом одни черепахи!»
Мой ответ – такой же: «Там и дальше нейроны, кругом одни нейроны». Голубой глаз – сочетание более простых составляющих: черного зрачка, голубой радужки, белка, окружающего радужную оболочку, и т. п. Таким образом, «нейрон голубых глаз» можно создать, подключив его к нейронам, которые умеют распознавать эти части голубого глаза. В отличие от нашей старушки я могу избежать проблемы бесконечности. Если мы будем продолжать делить каждый раздражитель на комбинацию более простых частей, в конце концов мы доберемся до раздражителя, который уже невозможно разделить дальше. Это – крошечные пятнышки света. Каждый фоторецептор глаза регистрирует крошечное пятнышко света на определенном участке сетчатки. В этом нет особой загадки. Фоторецепторы подобны множеству крошечных сенсоров цифрового фотоаппарата, каждый из которых детектирует свет единичным пикселем, улавливающим изображение.
Рис. 19. Перцептрон – многослойная модель нейронной сети
Согласно этой теории восприятия, нейроны подключены друг к другу и образуют сеть, которая организована иерархически. Те, что находятся в нижней части иерархии, детектируют простые раздражители – например, пятнышки света. Чем выше располагается нейрон на этой иерархической лестнице, тем более сложные раздражители он способен распознавать. Нейроны на верхушке лестницы умеют распознавать самые сложные раздражители – например, образ Дженнифер Энистон. Взаимное подключение нейронов подчиняется следующему правилу:
Нейрон, распознающий целое, получает возбуждающие сигналы от нейронов, распознающих части целого.
В 1980 году японский ученый-компьютерщик Кунихико Фукусима создал модель нейронной сети зрительного восприятия, организовав ее иерархическим образом – согласно этому правилу. Эта модель под названием «Неокогнитрон» стала наследницей перцептрона, описанного американским коллегой Фукусимы Фрэнком Розенблаттом в 1950-х годах. Перцептрон содержит слои нейронов, «стоящих на плечах» других нейронов (см. рис. 19). С каждым нейроном завязывают связи лишь нейроны из слоя непосредственно под ним.
«Неокогнитрон» умел распознавать рукописный текст. Его преемники демонстрируют более впечатляющие визуальные способности – к примеру, они умеют распознавать объекты на фотографиях. Хотя эти искусственно созданные модели нейронных сетей пока по-прежнему допускают больше ошибок, чем люди, их возможности с каждым годом увеличиваются. Такие успехи инженерной мысли придают определенное правдоподобие модели мозга, названной иерархическим перцептроном.
* * *
В правиле подключения, изложенном чуть раньше, мы сосредоточились на том, как нейрон образует синапсы с нейронами, находящимися ниже него на иерархической лестнице. Можно посмотреть в противоположную сторону и сформулировать, каким образом нейрон образует синапсы с теми нейронами, которые располагаются выше него в этой иерархии:
Нейрон, распознающий часть целого, посылает возбуждающие сигналы тем нейронам, которые детектируют целое.
Эти две формулировки правила эквивалентны друг другу, ибо раздражитель, распознаваемый нейроном где-нибудь посередине этой иерархической лестницы, можно рассматривать либо как целое, состоящее из более простых частей, либо как часть, которая принадлежит к более сложным «целым». Снова обратимся к голубому глазу как к примеру раздражителя (стимула). Можно рассматривать его как объект, содержащий более простые части: зрачок, радужную оболочку, белок. А можно рассматривать его как часть более сложного объекта – например, Дженнифер Энистон, Леонардо Ди Каприо или многих других людей, у которых голубые глаза.
Итак, функция нейрона зависит от его «исходящих», а не от его «входящих» связей. Чтобы прояснить эту двойственность, можно чуть-чуть приукрасить историю о Ньютоне и Лейбнице. Допустим, вы прочли в новостях, что недавно обнаружены старинные документы, которые доказывают, что какой-то никому не ведомый математик придумал интегральное исчисление за полвека до того, как это сделали Ньютон и Лейбниц. Отчаявшись обратить внимание на свое открытие, он умер в безвестности и унес интегральное исчисление с собой в могилу. Что же, теперь мы должны переписать учебники истории? И благодарить за интегральное исчисление не Ньютона и Лейбница, а этого непризнанного гения?
Такой пересмотр истории может показаться справедливым. Однако он не учитывает социальный аспект бытования науки. Я уже говорил, что всякое открытие – это не просто индивидуальный творческий акт одинокого гения, поскольку всякая новая идея основывается на старых идеях, которые позаимствованы у других. Точно так же можно утверждать, что сам акт открытия включает в себя не только создание новой идеи, но и процесс убеждения других, чтобы те приняли ее. Иными словами, чтобы по-настоящему считаться автором открытия, вы должны суметь нужным образом повлиять на окружающих.
Место Ньютона в истории определяется тем, как он использовал идеи своих предшественников и как он, вольно или невольно, сформировал идеи своих последователей. Основываясь на этой логике, предлагаю следующий тезис:
Функция нейрона определяется главным образом его связями с другими нейронами.
Эта максима – краеугольный камень доктрины, которую я называю коннекционизмом. Утверждение это подразумевает и входящие, и исходящие связи. Чтобы узнать, чем занимается нейрон, мы должны рассмотреть его входящие связи. Чтобы понять его воздействие на собратьев, следует изучить его исходящие связи. Мы учли обе эти точки зрения в двух формулировках нашего правила о части и целом, описывающих «подключения», необходимые для восприятия. Продолжая обзор коннекционистских теорий, мы встретимся с убедительными объяснениями не только восприятия, но и других умственно-психических явлений и способностей – например, памяти.
Звучит весьма заманчиво, но существуют ли в реальном мозгу по-настоящему веские свидетельства в пользу таких теорий? К сожалению, у нас пока нет для этого нужных экспериментальных методик. В экспериментах по изучению восприятия нейробиологи не могли отыскать нейроны, подключенные к нейрону Дженнифер Энистон, и увидеть, действительно ли они умеют опознавать те или иные части Дженни. Однако если мы примем главный принцип коннекционизма, изложенный выше, то придем к неизбежному выводу: мы не можем по-настоящему понять мозг, не построив карту нейронных связей, – иными словами, нам следует отыскать коннектомы.
* * *
У мозга есть чудесное свойство: вы можете думать о Дженнифер Энистон, даже если в данный момент не видите ее по телевизору или на журнальной фотографии. Думание о Дженни не требует непосредственного восприятия ее образа: вы можете думать о ней, вспоминая, как она играла в фильме 2003 года «Брюс Всемогущий», мечтать о том, как вы с ней познакомитесь, или размышлять о ее новом любовном увлечении. Можно ли такие размышления, подобно восприятию, свести к импульсам и секрециям?
Вернемся к эксперименту Ицхака Фрида и его коллег, он даст нам кое-какие важные указания. «Нейрон Холли Берри» у испытуемых активировался изображением актрисы Холли Берри, и ученые предполагали, что этот нейрон играет роль в восприятии ее образа. Однако тот же нейрон активировался и напечатанными словами «Холли Берри», а значит, он участвует и в процессе размышлений о ней. Так что, судя по всему, «нейрон Холли Берри» представляет абстрактную идею Холли Берри, идею, которая может возникать из восприятия образа или из наших мыслей.
Оба явления можно считать примерами более общего явления – процесса построения ассоциаций. Восприятие (перцепция) – ассоциация идеи с раздражителем, а мысль – ассоциация идеи с другой идеей. Как же восприятие и мысль действуют совместно, когда в вашей голове возникает воспоминание? Давайте рассмотрим возможный сценарий.
Солнечное весеннее утро. Вы, одна из моих читательниц, идете по улице, направляясь на работу. Внезапно вы чувствуете аромат цветов. Еще несколько шагов, и он буквально сбивает вас с ног. Вы еще не осознаёте, что на обочине дороги цветут магнолии, но вдруг словно бы переноситесь за тридевять земель. Вы вспоминаете, как некогда стояли рядом с цветущей магнолией возле дома из красного кирпича, где жил ваш первый возлюбленный. Он сжимает вас в объятиях. Вы чувствуете робость и смущение. Над вашими головами пролетает самолет, и вы слышите, как мать вашего избранника зовет вас в дом выпить лимонада.
К тому времени, как это воспоминание прокрутится в вашем сознании до конца, вы успеете подумать о многом: о магнолии, о доме из красного кирпича, о вашем возлюбленном, о самолете и т. п. Представим себе, что каждой из этих идей соответствует в вашем мозгу определенный нейрон. «Нейрон магнолии», «нейрон дома из красного кирпича», «нейрон возлюбленного», «нейрон самолета» – все они дают импульсы, когда вы вспоминаете ваш первый поцелуй.
Каким образом все эти импульсы провоцируются запахом магнолии? Ну да, возбуждение импульса в «нейроне магнолии» порождают нейронные пути, идущие от вашего носа. Но как объяснить, почему активируется «нейрон самолета», хотя сейчас в небе ни одного самолета нет? И почему активен «нейрон кирпичного дома», хотя на этой улице нет никаких кирпичных домов? Очевидно, тут результат мышления, а не непосредственного восприятия.
Чтобы объяснить такую нейронную активность, давайте временно примем все нейроны за возбуждающие, взаимно соединенные с помощью синапсов в структуру, именуемую клеточным ансамблем. На рис. 20 показан в качестве примера лишь небольшой ансамбль. Можно вообразить себе гораздо более крупный ансамбль, множество нейронов которого все соединены друг с другом. На диаграмме не показаны связи, идущие к другим нейронам мозга и идущие от них. Благодаря этим связям ансамбль получает сигналы от органов чувств или отправляет сигналы мышцам. Но здесь мы обращаем главное внимание на связи внутри клеточного ансамбля, представляющие ассоциации, которые вовлечены в процесс мышления.
Рис. 20. Клеточный ансамбль
Как эти связи порождают воспоминание о вашем первом поцелуе? Поскольку мы приняли, что все нейроны здесь – возбуждающие, можно сказать, что активация «нейрона магнолии» возбуждает другие нейроны клеточного ансамбля, тем самым активируя их. Это как лесной пожар, распространяющийся от дерева к дереву. Или как внезапное наводнение в пустыне, с устрашающей скоростью заполняющее водой все ложбины и впадины на своем пути. Подобное же распространение нейронной активности позволяет аромату магнолии вызвать в вашем сознании все образы и идеи, связанные с воспоминанием о вашем первом поцелуе.
Память – замечательная вещь, когда она работает. Однако все мы иной раз жалуемся на ее огрехи. Сам процесс вспоминания часто сопряжен с ощущением какого-то затруднения, тогда как восприятие обычно проходит без особых проблем и усилий. Если бы мозг хранил каждое воспоминание в отдельном клеточном ансамбле, то процесс припоминания, быть может, тоже казался бы нам простейшей задачей. Но для хранения множества воспоминаний требуется и множество ансамблей. Если бы клеточные ансамбли, подобно островам, были совершенно независимы друг от друга, наличие такого большого их количества ничему бы не помешало. Однако, как выясняется, им необходимо перекрываться. Здесь и кроется возможность неполадок с памятью.
Вновь обратимся к воспоминанию о вашем первом поцелуе. В состав этого воспоминания входит и тот эпизод, когда мать вашего парня звала вас отведать лимонада. Допустим, у вас имеется и другое воспоминание, в котором участвует лимонад: жаркий летний день, когда вы сидели перед своим домом и продавали прохожим ледяную шипучку в бумажных стаканчиках. Это воспоминание отличается от воспоминания о вашем первом поцелуе, но общее у них – лимонад, так что соответствующие им клеточные ансамбли перекрываются, как показано на рис. 21. (Двусторонние стрелки изображают синапсы, импульсы по которым проходят в обоих направлениях.) Опасность перекрывания очевидна: активация одного из этих ансамблей может возбудить и другой. Запах магнолии способен породить смесь двух воспоминаний – о вашем первом поцелуе и о лотке с лимонадом. Подобный сценарий может стать причиной неточности в воспоминаниях.
Рис. 21. Перекрывающиеся клеточные ансамбли
Чтобы предотвратить такое неизбирательное распространение активности, мозг мог бы наделить каждый нейрон высоким порогом активации. Допустим, нейрон не активируется, пока не получит хотя бы двух голосов «за» от своих советников. Поскольку клеточные ансамбли на рис. 21 перекрываются лишь одним нейроном, активность не будет распространяться от одного ансамбля к другому.
Но в таком механизме защиты, основанном на высоком пороге, кроется подвох: становится более строгим критерий успешного появления воспоминания. Для такого появления теперь требуется активация по меньшей мере двух нейронов клеточного ансамбля. Одного лишь аромата магнолии уже будет недостаточно для того, чтобы вы вспомнили о первом поцелуе. Понадобится еще и шум самолета, пролетающего над головой, или другие раздражители, которые являлись частью эпизода с первым поцелуем.
Будет ли мозг столь разборчив, когда речь идет о процессе припоминания, зависит от ситуации. Очевидно лишь, что возбуждение нейронов порой не происходит даже в тех случаях, когда должно. Это может служить причиной для другой нередкой жалобы на память – когда человек не может вспомнить о данном событии вообще ничего. (Что не объясняет чувства «ну вот, на языке вертится», но может объяснить те функциональные неполадки, которые такое чувство вызывают.) Иными словами, системы памяти, существующие у нас в мозгу, балансируют на очень тонкой грани. Слишком широкое распространение нейронной активности – и воспоминания перемешаются. Слишком малое распространение – и вы вообще ничего не вспомните. Вероятно, это одна из причин, по которым память никогда не работает идеально, как бы нам того ни хотелось.
Степень перекрывания клеточных ансамблей зависит от того, сколько таких ансамблей мы пытаемся впихнуть в сеть. Разумеется, перекрывание будет значительным, если мы попытаемся сохранить в себе слишком много воспоминаний. Наступит момент, когда невозможно будет установить порог, одновременно и позволяющий вспоминать, и препятствующий смешению воспоминаний. Как избежать подобной катастрофической информационной перегрузки? Дело в том, что у каждой нейронной сети, хранящей воспоминания, существует максимальная емкость.
В клеточном ансамбле все нейроны создают синапсы со всеми другими нейронами ансамбля, так что любой фрагмент воспоминания может запустить процесс воссоздания остальных его частей. Так, снимок возлюбленного может заставить женщину вспомнить о его доме, а посещение его дома – о нем самом. В этом случае процесс припоминания – двусторонний. Однако есть и примеры односторонних процессов, когда воспоминание подобно рассказу, где определенная последовательность событий разворачивается в довольно строгом хронологическом порядке. Как выстроить такое воспоминание? Ответ очевиден: расположить синапсы так, чтобы нейронное возбуждение могло распространяться по ним лишь в одном направлении. В синаптической цепочке, показанной на рис. 22, возбуждение распространяется слева направо.
Рис. 22. Синаптическая цепочка
Подытожим эту теорию, описывающую процесс вспоминания. Идеи представлены нейронами, совокупности (ассоциации) идей – связями между нейронами, а воспоминание – клеточным ансамблем или синаптической цепочкой. Воспоминание является нам, когда нейронное возбуждение успешно распространяется после того, как его возбудил некий фрагментарный раздражитель. Связи в клеточном ансамбле или синаптической цепочке устойчивы и сохраняются в течение долгого времени, вот почему детские воспоминания могут не покидать нас и в зрелые годы.
Психологическая составляющая этой теории описывается ассоциационизмом – школой мышления, у истоков которой стоял еще Аристотель. Позже эту концепцию воскресили такие английские философы, как Джон Локк и Дэвид Юм. К концу XIX века нейробиологи признали существование особых волокон в мозгу и уже вовсю рассуждали о нервных путях и связях. Логично было предположить, что физические связи служат материальной основой для психологических ассоциаций.
Теорию коннекционизма создавало и развивало во второй половине XX века несколько поколений исследователей. За несколько десятилетий она несколько присмирела под градом неумолкающей критики. Еще в 1951 году Карл Лешли, первооткрыватель явления кортикальной эквипотенциальности, опубликовал знаменитую статью «Проблема серийности и порядка в поведении», где подверг теорию коннекционизма уничижительному разбору. Его первое замечание самоочевидно: мозг способен порождать практически бесконечное количество разнообразных последовательностей сигналов. Синаптическая цепочка, может быть, идеально подходит для того, чтобы заучить наизусть стихотворение и выдавать одну и ту же последовательность слов всякий раз, когда это требуется, но вряд ли годится для обычной языковой практики, где одно и то же предложение редко повторяется дословно.
Первое возражение Лешли сравнительно легко отвести. Вообразим синаптическую цепочку, которая разветвляется на две, подобно дорожной развилке. Эти две цепочки могут ветвиться дальше – образуя сначала четыре, потом восемь и т. п. Если в нейронной сети много таких точек ветвления, она в принципе способна генерировать колоссальное количество последовательностей передачи возбуждения. Штука в том, что это возбуждение всегда должно в каждом конкретном случае «выбирать» одну, а не другую ветвь. Теоретики показали, что это можно проделывать при помощи нейронов-ингибиторов, которые специально включены в нейронную сеть так, чтобы заставлять ее ветви «конкурировать» друг с другом.
Второе, более фундаментальное замечание Лешли касается проблемы синтаксиса. Синаптическая цепочка использует межнейронные связи, чтобы отображать ассоциацию одной идеи со следующей идеей в данной последовательности. Лешли подчеркивал, что создание грамматически правильной фразы происходит не так просто, ибо «каждый слог в последовательности зависит не только от соседних слов, но и от более отдаленных». То, правилен ли будет конец фразы, может зависеть от взаимного расположения слов в самом ее начале. Концепция Лешли предвосхитила идеи лингвиста Ноама Хомского и его многочисленных последователей: они уделяют очень большое внимание проблеме синтаксиса.
Коннекционисты также пытались отвечать на второе возражение Лешли, хотя обсуждение этого вопроса лежит за рамками данной книги. Достаточно отметить, что ученые показали: коннекционизм вовсе не так ограничен, как полагали критики. Не думаю, что возможно отвергать какую бы то ни было доктрину, руководствуясь лишь теоретическими соображениями: ее необходимо проверять экспериментально. Для этого можно применить коннекциомику, я буду подробно говорить об этом позже.
Но сначала позвольте мне завершить рассказ об этой теории. Гипотеза, согласно которой синапсы являются материальной основой для ассоциаций, а воспоминания порождаются клеточными ансамблями и синаптическими цепочками, – это лишь половина дела. Пора задать себе вопрос, который я до поры до времени откладывал. Каким образом в нас вообще хранятся воспоминания?
Глава 5
Собирание воспоминаний
Великая пирамида Хеопса в долине Гизы стоит уже сорок пять веков – остров вечности среди вечно движущихся песков близ Каира. Ее размеры вызывают оторопь, да и любой из ее громадных блоков уже сам по себе поражает величиной. Никто сейчас в точности не знает, каким образом эти камни весом по две с половиной тонны вырубали в каменоломне, доставляли на место строительства, поднимали на высоту 140 метров. По оценкам древнегреческого историка Геродота, на ее сооружение ушло двадцать лет. Иными словами, 2,3 миллиона блоков были помещены на должные места с ошеломляющей скоростью – по одному в минуту.
Египетский фараон Хеопс повелел возвести Великую пирамиду, чтобы та стала его гробницей. Если бы нас не отделяла от страданий сотни тысяч рабочих охлаждающая историческая дистанция, мы бы осудили эту пирамиду как жестокую демонстрацию власти себялюбивого тирана. Но, может, лучше простить Хеопса и просто любоваться этим фантастическим достижением безымянных тружеников, воспринимая пирамиду не как памятник фараону, а как свидетельство изобретательности и потрясающих способностей человека?
Хеопс применил весьма прямолинейную стратегию: если хочешь, чтобы тебя помнили, сооруди массивное сооружение из материала, который достаточно долговечен, чтобы противостоять разрушительному действию времени. Вот и способность мозга запоминать зависит от его материальной структуры. Что же еще может отвечать за стойкость воспоминаний, которые не стираются в течение всей жизни? Ну да, иногда мы что-то забываем или вспоминаем неточно, к тому же каждый день прибавляются новые воспоминания. Именно потому и сравнивал Платон память с другим материалом, более податливым, чем камни пирамид:
В уме у человека существует как бы восковая доска… Ее можно считать даром Памяти, матери муз, и когда мы хотим припомнить что-то… мы как бы подносим воск к тому, что воспринимаем и думаем, и они отпечатываются на дощечке, словно печать с кольца.
В Античном мире деревянные дощечки, покрытые воском, встречались часто: они служили аналогом наших современных блокнотов. Острым стилом на воске писали, чертили, рисовали. Затем специальным инструментом с плоским краем воск разглаживали, тем самым готовя дощечку для последующего использования. Восковая дощечка, это рукотворное запоминающее устройство, так и напрашивается в метафоры для человеческой памяти.
Платон, разумеется, не имел в виду, что наша черепная коробка действительно заполнена воском. Он представил себе лишь некий аналог – материал, который способен сохранять свою форму, которую при этом можно еще и менять. Скульпторы и инженеры формуют или лепят «пластичные» материалы и куют или штампуют «ковкие». А родители и учителя лепят юные умы. Может быть, это не просто метафора? Может быть, образование и другой приобретаемый опыт в буквальном смысле меняют материальную форму и структуру мозга? Часто говорят, что мозг пластичен, но что это означает?
Нейробиологи давно предполагают, что коннектом – аналог платоновской восковой дощечки. Нейронные связи – вещь материальная, что хорошо видно по снимкам, полученным с помощью электронного микроскопа. Подобно воску, эти связи достаточно устойчивы, чтобы оставаться одними и теми же на протяжении долгого времени, но при этом достаточно пластичны, чтобы меняться.
Одно из важных свойство синапса – его сила, то есть «вес» (относительная ценность) его мнения при голосовании, которое проводит нейрон, «решая», когда породить нервный импульс. Известно, что синапсы могут как усиливаться, так и ослабляться. Можно назвать это изменением синаптического веса (ИСВ). Что же происходит с синапсом, когда он становится сильнее? Открытия, сделанные множеством нейробиологов, которые занимались этим вопросом, могли бы составить целую книгу. Здесь я приведу лишь упрощенный ответ, он понравился бы френологам: синапсы усиливаются, делаясь крупнее. Вспомните, что по одну сторону синаптической щели располагаются везикулы с нейротрансмиттером, а по другую сторону – рецепторы нейротрансмиттера. Синапс усиливается, создавая больше везикул и больше рецепторов. Чтобы выделять больше нейротрансмиттера при каждом акте секреции, он вырабатывает больше везикул. Чтобы проявлять более высокую чувствительность к определенному количеству нейротрансмиттера, он мобилизует больше рецепторов.
Кроме того, синапсы могут возникать и исчезать: это явление я называю рекомбинацией связей. Давно известно, что молодой мозг создает синапсы в несметных количествах – нейроны соединяются в сеть. Синапс возникает в точке контакта между двумя нейронами. По причинам, которые еще не до конца понятны, в этой же точке собираются везикулы, рецепторы и другая синаптическая аппаратура. Случается, что юный мозг сам уничтожает синапсы – удаляя эту аппаратуру из точек контакта.
В 1960-е годы нейробиологи полагали, что образование и самоуничтожение синапсов к зрелости затухают. Но это мнение основывалось скорее на абстрактном теоретизировании, чем на эмпирических доказательствах. Возможно, ученые невольно сравнивали развитие мозга со сборкой какого-нибудь электронного прибора. Чтобы изготовить такой прибор, нужно соединить множество проводов, но мы никогда не подключаем их по-новому, после того как устройство заработало. А может быть, исследователи думали, что силу синапса очень легко изменить, подобно компьютерному софту, но при этом считали, что сами синапсы – нечто жесткое и фиксированное подобно компьютерному «железу».
В последние десять лет нейробиологи полностью поменяли свое мнение по этому поводу. Теперь повсеместно признано, что синапсы возникают и исчезают даже в мозгу взрослого человека. Убедительные доказательства этого наконец-то удалось получить напрямую – наблюдая за синапсами в живом мозгу при помощи нового метода – двухфотонной микроскопии. На рис. 23 показано полученное этим методом изображение дендрита коры головного мозга мыши, меняющегося на протяжении двух недель. (Цифра в левом нижнем углу каждой картинки обозначает количество дней, прошедших с начала эксперимента.)
Рис. 23. Свидетельство рекомбинации: на дендрите коры головного мозга мыши появляются и исчезают шипики
От дендрита отходят выросты – дендритные шипики. Большинство синапсов между возбуждающими нейронами завязываются на шипиках, а не на стволе дендрита. На этой иллюстрации некоторые шипики не изменялись в течение всех двух недель эксперимента, зато другие появлялись (например, отмеченный треугольником) или пропадали (например, отмеченный звездочкой). Перед нами явное свидетельство того, что синапсы возникают и исчезают. Ученые продолжают спорить о том, насколько часто это происходит, но все сходятся на том, что такая рекомбинация вполне возможна.
Почему ИСВ и рекомбинация так важны? Эти два типа коннектомных трансформаций происходят в течение всей нашей жизни. И мы должны изучать их, если хотим понять личностные изменения как явление, которое охватывает все наше земное существование. Неважно, сколько нам лет: мы никогда не перестаем запасаться новыми воспоминаниями, и помешать этому могут лишь некоторые болезни мозга. По мере взросления и старения мы порой начинаем жаловаться, что нам стало труднее учиться, но даже пожилые люди способны приобретать новые знания и навыки. И скорее всего, в такие перемены вносит свой вклад ИСВ и рекомбинация.
Но есть ли у нас какие-то доказательства этого? Свидетельства, указывающие на ИСВ при накоплении воспоминаний, получены нобелевским лауреатом (2000 г.) Эриком Канделем и его сотрудниками. Они изучали нервную систему Aplysia californica (морской улитки аплизии, называемой также морским зайцем), желеобразного существа, обитающего в приливных лужах калифорнийских пляжей. Если потревожить это животное, оно втягивает жабры и сифон. Кроме того, оно может изменять свою чувствительность к беспокоящим воздействиям – иными словами, обладает своего рода памятью, пускай и примитивной. Мы уже выяснили, что в основе такого поведения лежит работа нервных путей, идущих от органов чувств к мышцам. Кандель выявил одну определенную связь в соответствующем нервном пути и показал, что изменения в силе этой связи имеют отношение к той «простой памяти», о которой мы упоминали выше.
Задействована ли рекомбинация в хранении воспоминаний? Я уже упоминал об идее френологов, согласно которой обучение – это утолщение коры головного мозга. В 1970-х–1980-х годах Уильям Гринаф и другие исследователи (подсчитывая синапсы в утолщающейся коре у крыс, выращиваемых в обогащенной среде) обнаружили доказательства того, что такое утолщение вызывается увеличением количества синапсов. Эти находки позволили некоторым энтузиастам предложить неофренологическую теорию: воспоминания накапливаются путем создания новых синапсов.
Однако ни тот, ни другой подход не помог по-настоящему пролить свет на загадку сохранения воспоминаний. Метод Канделя оказался непригоден для мозга, более похожего на наш с вами: в таком мозгу воспоминания, судя по всему, не локализованы в отдельных синапсах. Подход же Гринафа также грешит неполнотой, ибо подсчет синапсов еще не говорит о том, каким образом они организованы в узор. Более того, если даже увеличение числа синапсов (скажем, при утолщении коры) коррелирует с процессом обучения, не очень ясно, случайна такая связь или нет.
Чтобы по-настоящему раскусить загадку памяти, нам нужно выяснить, задействованы ли в ней процессы изменения синаптического веса и рекомбинации связей, и если да, то как именно. Я уже говорил о теории, согласно которой рисунки связей, влияющие на память, представляют собой клеточные ансамбли и синаптические цепочки. Сделаем еще один шаг и предположим, что эти узоры возникают благодаря ИСВ и рекомбинации. Рассмотрим те вопросы, которые в результате появляются. Независимы ли эти два процесса – или они идут совместно? Почему мозг использует оба, а не один? Можно ли объяснить какие-то ограничения, свойственные памяти, как неполадки в ходе накопления информации, происходящего благодаря этим процессам?
Помимо удовлетворения нашего любопытства касательно памяти, исследование ИСВ и рекомбинации связей может иметь и практическое значение. Допустим, ваша задача – создать лекарство, улучшающее способность накапливать воспоминания. Если вы верите в неофренологию, то вы, может быть, попытаетесь разработать препарат, который позитивно действует на процессы, играющие роль в выращивании новых синапсов. Но если неофренологи ошибаются (скорее всего, так оно и есть), подобное выращивание новых синапсов может оказать на мозг совсем не то действие, что вы планировали. И вообще, хотим ли мы усовершенствовать свою память или предотвратить ее неполадки, нам необходимо прежде узнать кое-что об основополагающих механизмах ее действия.
* * *
Мы уже видели, каким образом клеточный ансамбль может сохранять в себе ассоциации между идеями как связи между нейронами. Но как мозг вообще создает клеточный ансамбль? Это коннекционистский вариант вопроса, которым с давних пор задавались философы: откуда берутся идеи и их ассоциации? Возможно, некоторые из них – врожденные. Но очевидно, что все остальные должны появляться в результате обучения и накопления нового опыта.
За много веков философы вывели целый ряд принципов, согласно которым в процессе обучения и накопления нового опыта появляются новые ассоциации. На первой строчке этого списка – совпадение, иногда его еще называют смежностью во времени или пространстве. Если вы увидите снимки поп-певицы с ее дружком-бейсболистом, вы поймете, что между ними существует ассоциация. Второй фактор – повторение. Единичного лицезрения этих знаменитостей, сфотографированных вместе, может оказаться недостаточно для того, чтобы в вашем сознании возникла ассоциация, но если вы с тошнотворной частотой каждый день натыкаетесь на их совместные изображения в каждом журнале и газете, вы неизбежно впитаете в себя эту новую ассоциацию. Для некоторых типов ассоциаций играет важную роль и хронология, расположение объектов во времени. В детстве вы много раз повторяли алфавитную последовательность букв, пока не выучивали ее наизусть. Вы заучивали ассоциацию каждой буквы со следующей, поскольку буквы всегда шли друг за другом в определенном порядке. Ассоциация же между поп-исполнительницей и ее приятелем в описанном случае – двусторонняя, поскольку они всегда появляются перед вашими глазами одновременно.
Поэтому философы предположили, что нам удается впитать ту или иную ассоциацию идей, когда одна неоднократно сопутствует другой или следует за ней. Коннекционисты заключают:
Если два нейрона неоднократно активируются одновременно, связи между ними усиливаются в обоих направлениях.
Это правило пластичности применимо для впитывания двух идей, неоднократно появляющихся совместно – скажем, как в случае с поп-певичкой и ее другом. Для обучения ассоциациям между идеями, появляющимися перед вами одна за другой, коннекционисты предложили сходное правило:
Если два нейрона неоднократно активируются последовательно, усиливается связь, направленная от одного ко второму.
Кстати, в обоих правилах предполагается, что связи усиливаются навсегда или, по крайней мере, надолго: так ассоциация закрепляется в памяти.
Правило, описывающее последовательную активацию нейронов, предложил Дональд Хебб. Кроме того, в своей книге «Организация поведения» (1949) он ввел термин «клеточный ансамбль». Оба варианта правила (и «одновременный», и «последовательный») позже стали называть правилами синаптической пластичности Хебба. При этом оговаривается, что в обоих правилах есть «зависимость от активности»: пластичность повышается благодаря изменению активности нейронов, вовлеченных в создание соответствующего синапса. (Есть и другие способы повышения синаптической пластичности, не включающие в себя изменение нейронной активности: например, введение некоторых препаратов.) Обычно хеббовская пластичность описывает лишь синапсы между возбуждающими нейронами.
Хебб намного опередил свое время. Тогда у нейробиологов не существовало методов для выявления синаптической пластичности. Измерения параметров образования импульсов многие десятилетия проводились путем введения металлических проводов в нервную систему. Поскольку конец провода оставался за пределами нейрона, этот метод назвали «внеклеточной» записью параметров. По каждому проводу шли сигналы, соответствующие импульсам от нескольких нейронов, – словно разговоры в переполненном баре, накладывающиеся друг на друга. Этот метод применяется и поныне. Именно его использовали Ицхак Фрид и его коллеги, чтобы обнаружить «нейрон Дженнифер Энистон». Осторожно маневрируя кончиком провода, можно выделить сигнал единичного нейрона – подобно тому, как вы приближаете ухо ко рту вашего друга в шумном баре, чтобы лучше слышать его на фоне остальных голосов.
Внеклеточная запись оказалась достаточно подходящим методом для обнаружения нервных импульсов, однако она не позволяла измерить слабые электрические сигналы отдельных синапсов. Эту задачу впервые успешно решили в 1950-е годы, вставив в отдельный нейрон стеклянный электрод с чрезвычайно острым наконечником. Подобная «внутриклеточная» запись настолько точна, что с ее помощью можно детектировать гораздо более слабые сигналы – ну как если бы вы засунули ухо внутрь рта вашего барного собеседника. Кроме того, внутриклеточный электрод можно применять для того, чтобы с помощью электрического тока стимулировать нейрон к испусканию импульсов.
Чтобы измерить силу синапса, который осуществляет связь, направленную от нейрона А к нейрону Б, мы вставляем электроды в оба нейрона. Затем стимулируем образование импульса в нейроне А, в результате чего синапс выделяет нейротрансмиттер. После этого мы измеряем электрическое напряжение в нейроне Б, который отвечает на этот стимул всплеском сигнала, фиксируемым приборами. Величина этого всплеска как раз и характеризует силу синапса.
Можно измерять не только силу синапса, но и изменения этой силы. Чтобы создать эффект хеббовской пластичности, мы стимулируем образование импульса у пары нейронов. Как выяснилось, повторная стимуляция (последовательная или одновременная) усиливает синапсы – в полном согласии с двумя вариантами правила Хебба, изложенными ранее.
После того как произошло такое наведенное изменение синаптической силы, оно может держаться до конца эксперимента – самое большее несколько часов, ибо не так-то просто сохранять нейроны живыми после того, как в них вонзили электроды. Впрочем, более грубые и примитивные опыты, которые еще в начале 1970-х делались на целых группах нейронов и синапсов, указывают на то, что изменения синаптической силы могут держаться несколько недель или даже дольше. Вопрос устойчивости является для нас ключевым, если хеббовская пластичность действительно служит механизмом накопления и хранения памяти: ведь некоторые воспоминания не покидают нас всю жизнь.
Такие эксперименты, проводившиеся в 1970-е годы, дали нам первые реальные свидетельства роста силы синапсов. К тому времени уже успела появиться и теория хранения воспоминаний, основанная на идеях Хебба. Согласно наиболее простому варианту этой теории, формирование нейронной сети начинается с возникновения между нейронами каждой пары, составляющей сеть, слабых синапсов в обоих направлениях. В дальнейшем это предположение окажется шатким, но мы его пока примем, чтобы легче представить саму теорию.
Вернемся к эпизоду вашего первого поцелуя – реальному событию, которое оставило след в вашей памяти. «Нейрон магнолии», «нейрон кирпичного дома», «нейрон возлюбленного», «нейрон самолета» и т. п. – все они активировались благодаря раздражителям вокруг вас, и произошло это, вероятно, быстро и мощно. Если применить к этому случаю «одновременную» версию правила Хебба, можно заключить, что всё это импульсообразование послужило усилению синапсов между упомянутыми нейронами.
Эти усилившиеся синапсы все вместе образуют клеточный ансамбль – если мы слегка пересмотрим понятие такого ансамбля и примем, что он представляет собой набор возбуждающих нейронов, связанных друг с другом через сильные синапсы. В нашем исходном определении такого допущения не было. Теперь же оно нам понадобилось, поскольку наша сеть содержит множество слабых синапсов, которые к данному клеточному ансамблю не принадлежат. Эти синапсы существовали и до вашего первого поцелуя – и после него они не переменились.
Слабые синапсы не оказывают влияния на процесс припоминания. Активность распространяется от нейрона к нейрону в пределах клеточного ансамбля, но не выходит за его границы, поскольку синапсы, наведенные от ансамбля к другим нейронам, чересчур слабы для активации этих внешних нейронов. Поэтому наше новое определение клеточного ансамбля работает точно так же, как работало старое.
Аналогичная теория приложима и к синаптической цепочке. Допустим, последовательность стимулов активирует некую последовательность идей. Каждая идея представлена характерным рисунком образования импульсов группой нейронов. Если группы, соответствующие этой последовательности, неоднократно дают импульсы, то, согласно «последовательной» версии правила Хебба, будут усиливаться все существующие синапсы, осуществляющие связь в направлении от нейронов в данной группе к нейронам в соседней. Это и есть синаптическая цепочка, если мы опять-таки пересмотрим ее определение, включив в него лишь узор из сильных связей.
Если эти связи достаточно сильны, образование импульсов будет распространяться по цепочке, не нуждаясь в какой-то последовательности внешних раздражителей. Любой стимул, активирующий первую группу нейронов, спровоцирует воспоминание о целой последовательности идей, как описано в главе 4. А каждое воспоминание в этой последовательности будет еще больше усиливать связи в цепочке – согласно хеббовской теории пластичности. Так вода в реке постепенно углубляет русло, и тем самым воде становится всё легче течь.
Уметь запоминать очень важно, однако столь же необходимо уметь забывать. Когда-то ваши нейроны, отвечающие за Дженнифр Энистон и Брэда Питта, были связаны в клеточный ансамбль с помощью сильных синапсов. Но настал день, когда вы впервые увидели Брэда с Анджелиной. (Знаю-знаю, это был грустный день. Надеюсь лишь, что вы все-таки не впали в отчание.) Благодаря хеббовской пластичности окрепли связи между вашими нейронами, отвечающими за Брэда и Анджелину, и эти нейроны образовали новый клеточный ансамбль. Что же стало со связями между нейронами Брэда и Дженни?
Можно придумать аналог хеббовского правила, который будет годиться и для процесса забывания. Возможно, связи между двумя нейронами ослабляются, если один неоднократно оказывается активным, когда другой неактивен. Это будет ослаблять синапсы между образами Брэда и Дженни всякий раз, когда вы будете видеть Брэда без нее.
Но можно представить себе и альтернативную версию: такое ослабление вызвано прямой конкуренцией между синапсами. Возможно, синапсы между Брэдом и Анджелиной напрямую соперничают с синапсами между Брэдом и Дженни за некое «питательное вещество», которое необходимо синапсам для выживания. Если какие-то синапсы усиливаются, они потребляют больше этого вещества, оставляя меньше пищи другим, которые в результате ослабевают. Пока не очень ясно, существуют ли такие вещества для синапсов, но аналогичные «питательные факторы», как уже выяснено, работают для нейронов. Один из примеров – фактор роста нервной ткани. За его открытие Рита Леви-Монтальчини и Стэнли Коэн получили в 1986 году Нобелевскую премию.
* * *
Древние римляне использовали термин «tabula rasa» для обозначения восковых дощечек, описанных Платоном. Обычно этот термин переводят выражением «чистая доска», поскольку в XVIII–XIX вв. на смену восковым табличкам пришли небольшие доски, на которых писали мелом. В «Опыте о человеческом разумении» философ Джон Локк, много внимания уделявший проблемам ассоциативности, выбрал иное сравнение:
Предположим, что ум есть, так сказать, белая бумага без всяких знаков и идей. Но каким же образом он получает их? Откуда он приобретает тот их обширный запас, который деятельное и беспредельное человеческое воображение нарисовало с почти бесконечным разнообразием? Откуда получает он весь материал рассуждения и знания? На это я отвечаю одним словом: из опыта[10 - Перевод А. Н. Савина.].
Чистый лист бумаги содержит нулевую информацию, но потенциал его бесконечен. Локк уподоблял ум новорожденного младенца белой бумаге, которая готова к тому, чтобы ее заполнили буквы опыта. В рамках нашей теории накопления и сохранения воспоминаний мы предположили, что все нейроны изначально связаны друг с другом: точнее, каждый нейрон связан со всеми остальными. Синапсы при этом слабы, они готовы к тому, чтобы на них «написало свои знаки» хеббовское усиление. Поскольку все возможные связи уже существуют, может возникнуть любой ансамбль клеток. Такая сеть имеет неограниченный потенциал – как чистый лист у Локка.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
notes
Сноски
1
В последние 5–6 лет в отечественной научно-популярной литературе всё чаще встречается термин «нейронаука», прямая калька с английского термина «neuroscience». Нейронаука не ограничивается собственно биологией и может включать в себя, например, нейропсихологию. В дальнейшем мы будем в зависимости от контекста использовать термины «нейробиология», «нейрофизиология» и лишь изредка – более обобщенный термин «нейронаука». (Здесь и далее – примечания переводчика.)
2
Подробнее о Гольджи и Кахале см. в главе 8.
3
Аденин, гуанин, цитозин и тимин.
4
Говоря о коннектомах, автор неизменно пользуется глаголом «найти». Важно отметить, что в узком смысле коннектом – не реально существующий наблюдаемый объект вроде черепной коробки или нейрона, а умозрительная схема, которую вычисляют («находят») на основании изучения нейронов и межнейронных связей. Собственно, такому изучению и посвящена книга.
5
Конечный мозг – передний отдел головного мозга: полушария, покрытые корой, мозолистое тело, полосатое тело и обонятельный мозг.
6
Отсылка к знаменитому стихотворению Джона Донна, ставшему эпиграфом к не менее знаменитому роману Хемингуэя «По ком звонит колокол»: «Нет человека, который был бы как остров…»
7
Капеллини – разновидность тонких спагетти диаметром 0,85– 0,92 мм.
8
В отечественной специальной литературе часто пишут не «пик», а «спайк» – прямое заимствование из английского. Распространен также термин «нервный импульс».
9
Коби Брайант – знаменитый американский баскетболист.
10
Перевод А. Н. Савина.

                                                 Купить на ЛитРес

 

 

Комментарии

Популярные сообщения из этого блога

День, когда я перестала торопить своего ребенка. История современной мамы, которая научилась успевать главное

Сила Киски. Как стать женщиной, перед которой невозможно устоять

Пять четвертинок апельсина